Actor-mimic: Deep multitask and transfer reinforcement learning E Parisotto, JL Ba, R Salakhutdinov arXiv preprint arXiv:1511.06342, 2015 | 635 | 2015 |
A generalist agent S Reed, K Zolna, E Parisotto, SG Colmenarejo, A Novikov, G Barth-Maron, ... arXiv preprint arXiv:2205.06175, 2022 | 481 | 2022 |
Generating images from captions with attention E Mansimov, E Parisotto, JL Ba, R Salakhutdinov arXiv preprint arXiv:1511.02793, 2015 | 458 | 2015 |
Neuro-symbolic program synthesis E Parisotto, A Mohamed, R Singh, L Li, D Zhou, P Kohli arXiv preprint arXiv:1611.01855, 2016 | 359 | 2016 |
The hanabi challenge: A new frontier for ai research N Bard, JN Foerster, S Chandar, N Burch, M Lanctot, HF Song, E Parisotto, ... Artificial Intelligence 280, 103216, 2020 | 329 | 2020 |
Stabilizing transformers for reinforcement learning E Parisotto, F Song, J Rae, R Pascanu, C Gulcehre, S Jayakumar, ... International Conference on Machine Learning, 7487-7498, 2020 | 292 | 2020 |
Neural map: Structured memory for deep reinforcement learning E Parisotto, R Salakhutdinov arXiv preprint arXiv:1702.08360, 2017 | 275 | 2017 |
Efficient Exploration via State Marginal Matching L Lee, B Eysenbach, E Parisotto, E Xing, S Levine, R Salakhutdinov arXiv preprint arXiv:1906.05274, 2019 | 213 | 2019 |
Active Neural Localization DS Chaplot, E Parisotto, R Salakhutdinov arXiv preprint arXiv:1801.08214, 2018 | 102 | 2018 |
Gated path planning networks L Lee, E Parisotto, DS Chaplot, E Xing, R Salakhutdinov International Conference on Machine Learning, 2947-2955, 2018 | 89 | 2018 |
Global pose estimation with an attention-based recurrent network E Parisotto, D Singh Chaplot, J Zhang, R Salakhutdinov Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018 | 86 | 2018 |
In-context reinforcement learning with algorithm distillation M Laskin, L Wang, J Oh, E Parisotto, S Spencer, R Steigerwald, ... arXiv preprint arXiv:2210.14215, 2022 | 35 | 2022 |
Shaking the foundations: delusions in sequence models for interaction and control PA Ortega, M Kunesch, G Delétang, T Genewein, J Grau-Moya, J Veness, ... arXiv preprint arXiv:2110.10819, 2021 | 32 | 2021 |
Efficient Transformers in Reinforcement Learning using Actor-Learner Distillation E Parisotto, R Salakhutdinov arXiv preprint arXiv:2104.01655, 2021 | 25 | 2021 |
Concurrent Meta Reinforcement Learning E Parisotto, S Ghosh, SB Yalamanchi, V Chinnaobireddy, Y Wu, ... arXiv preprint arXiv:1903.02710, 2019 | 20 | 2019 |
Neural network for program synthesis ASA Mohamed, R Singh, L Li, D Zhou, P Kohli, E Parisotto US Patent 10,795,645, 2020 | 17 | 2020 |
Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors S Bohez, S Tunyasuvunakool, P Brakel, F Sadeghi, L Hasenclever, ... arXiv preprint arXiv:2203.17138, 2022 | 14 | 2022 |
RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation K Bousmalis, G Vezzani, D Rao, C Devin, AX Lee, M Bauza, T Davchev, ... arXiv preprint arXiv:2306.11706, 2023 | 11 | 2023 |
Structured State Space Models for In-Context Reinforcement Learning C Lu, Y Schroecker, A Gu, E Parisotto, J Foerster, S Singh, F Behbahani arXiv preprint arXiv:2303.03982, 2023 | 10 | 2023 |
Input-output example encoding ASA Mohamed, P Kohli, R Singh, E Parisotto US Patent 10,817,552, 2020 | 10 | 2020 |