Подписаться
Joschka Boedecker
Joschka Boedecker
Professor of Computer Science, University of Freiburg, Germany
Подтвержден адрес электронной почты в домене informatik.uni-freiburg.de - Главная страница
Название
Процитировано
Процитировано
Год
Embed to control: A locally linear latent dynamics model for control from raw images
M Watter, J Springenberg, J Boedecker, M Riedmiller
Advances in neural information processing systems 28, 2015
8372015
Information Processing in Echo State Networks at the Edge of Chaos
MA Joschka Boedecker, Oliver Obst, Joseph T. Lizier
Theory in Biosciences 131 (3), 205-213, 0
281*
Deep reinforcement learning with successor features for navigation across similar environments
J Zhang, JT Springenberg, J Boedecker, W Burgard
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2017
2712017
High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning
B Mirchevska, C Pek, M Werling, M Althoff, J Boedecker
2018 21st International Conference on Intelligent Transportation Systems …, 2018
1822018
Neural slam: Learning to explore with external memory
J Zhang, L Tai, J Boedecker, W Burgard, M Liu
arXiv preprint arXiv:1706.09520, 2017
1642017
Machine-learning-based diagnostics of EEG pathology
LAW Gemein, RT Schirrmeister, P Chrabąszcz, D Wilson, J Boedecker, ...
NeuroImage 220, 117021, 2020
1532020
Uncertainty-driven imagination for continuous deep reinforcement learning
G Kalweit, J Boedecker
Conference on Robot Learning, 195-206, 2017
1332017
Vr-goggles for robots: Real-to-sim domain adaptation for visual control
J Zhang, L Tai, P Yun, Y Xiong, M Liu, J Boedecker, W Burgard
IEEE Robotics and Automation Letters 4 (2), 1148-1155, 2019
1172019
Approximate real-time optimal control based on sparse gaussian process models
J Boedecker, JT Springenberg, J Wülfing, M Riedmiller
2014 IEEE symposium on adaptive dynamic programming and reinforcement …, 2014
962014
A survey of deep network solutions for learning control in robotics: From reinforcement to imitation
L Tai, J Zhang, M Liu, J Boedecker, W Burgard
arXiv preprint arXiv:1612.07139, 2016
902016
Applied machine learning and artificial intelligence in rheumatology
M Hügle, P Omoumi, JM van Laar, J Boedecker, T Hügle
Rheumatology advances in practice 4 (1), rkaa005, 2020
882020
Autonomous learning of state representations for control: An emerging field aims to autonomously learn state representations for reinforcement learning agents from their real …
W Böhmer, JT Springenberg, J Boedecker, M Riedmiller, K Obermayer
KI-Künstliche Intelligenz 29 (4), 353-362, 2015
842015
Simspark–concepts and application in the robocup 3d soccer simulation league
J Boedecker, M Asada
Autonomous Robots 174, 181, 2008
682008
Dynamic input for deep reinforcement learning in autonomous driving
M Huegle, G Kalweit, B Mirchevska, M Werling, J Boedecker
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
572019
Initialization and self‐organized optimization of recurrent neural network connectivity
J Boedecker, O Obst, NM Mayer, M Asada
HFSP journal 3 (5), 340-349, 2009
472009
Early seizure detection with an energy-efficient convolutional neural network on an implantable microcontroller
M Hügle, S Heller, M Watter, M Blum, F Manzouri, M Dumpelmann, ...
2018 International Joint Conference on Neural Networks (IJCNN), 1-7, 2018
442018
A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain–computer interfacing
D Kuhner, LDJ Fiederer, J Aldinger, F Burget, M Völker, RT Schirrmeister, ...
Robotics and Autonomous Systems 116, 98-113, 2019
422019
Dynamic interaction-aware scene understanding for reinforcement learning in autonomous driving
M Hügle, G Kalweit, M Werling, J Boedecker
2020 IEEE International Conference on Robotics and Automation (ICRA), 4329-4335, 2020
372020
Real-time inverse dynamics learning for musculoskeletal robots based on echo state gaussian process regression
C Hartmann, J Boedecker, O Obst, S Ikemoto, M Asada
Robotics: Science and Systems VIII, 113-120, 2013
372013
Flexible coordination of multiagent team behavior using HTN planning
O Obst, J Boedecker
RoboCup 2005: Robot Soccer World Cup IX 9, 521-528, 2006
342006
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20