Follow
Stefano Marelli
Stefano Marelli
Senior Scientist, Lecturer - ETH Zurich
Verified email at ibk.baug.ethz.ch - Homepage
Title
Cited by
Cited by
Year
UQLab: a Framework for Uncertainty Quantification in Matlab
S Marelli, B Sudret
Second International Conference on Vulnerability and Risk Analysis and …, 2014
10412014
UQLab user manual–Polynomial chaos expansions
S Marelli, B Sudret
Chair of risk, safety & uncertainty quantification, ETH Zürich, 0.9-104 …, 2015
3062015
Rare event estimation using polynomial-chaos kriging
R Schöbi, B Sudret, S Marelli
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A …, 2017
2892017
An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis
S Marelli, B Sudret
Structural Safety 75, 67-74, 2018
2462018
Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes
L Le Gratiet, S Marelli, B Sudret
Handbook of Uncertainty Quantification, 2016
2232016
Trade-offs between geographic scale, cost, and infrastructure requirements for fully renewable electricity in Europe
T Tröndle, J Lilliestam, S Marelli, S Pfenninger
Joule 4 (9), 1929-1948, 2020
1932020
Sparse polynomial chaos expansions: Literature survey and benchmark
N Lüthen, S Marelli, B Sudret
SIAM/ASA Journal on Uncertainty Quantification 9 (2), 593-649, 2021
1922021
UQLab user manual – Kriging
C Lataniotis, S Marelli, B Sudret
Technical report, Chair of risk, safety & uncertainty quantification, ETH …, 2015
180*2015
Surrogate models for uncertainty quantification: An overview
B Sudret, S Marelli, J Wiart
2017 11th European conference on antennas and propagation (EUCAP), 793-797, 2017
1782017
Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum
Euclid Collaboration, M Knabenhans, J Stadel, S Marelli, D Potter, ...
Monthly Notices of the Royal Astronomical Society 484 (4), 5509-5529, 2019
1572019
Data-driven polynomial chaos expansion for machine learning regression
E Torre, S Marelli, P Embrechts, B Sudret
Journal of Computational Physics 388, 601-623, 2019
1522019
Active learning for structural reliability: Survey, general framework and benchmark
M Moustapha, S Marelli, B Sudret
Structural Safety 96, 102174, 2022
1452022
Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations
Euclid Collaboration, M Knabenhans, J Stadel, D Potter, J Dakin, ...
Monthly Notices of the Royal Astronomical Society 505 (2), 2840-2869, 2021
1202021
UQLab user manual - Sensitivity Analysis
S Marelli, C Lamas-Fernandes, B Sudret
Tech. Rep, 2015
117*2015
A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas
E Torre, S Marelli, P Embrechts, B Sudret
Probabilistic Engineering Mechanics 55, 1-16, 2019
1162019
Engineering analysis with probability boxes: A review on computational methods
MGR Faes, M Daub, S Marelli, E Patelli, M Beer
Structural Safety 93, 102092, 2021
1022021
Sequential design of experiment for sparse polynomial chaos expansions
N Fajraoui, S Marelli, B Sudret
SIAM/ASA Journal on Uncertainty Quantification 5 (1), 1061-1085, 2017
97*2017
Extending classical surrogate modelling to high dimensions through supervised dimensionality reduction: a data-driven approach
C Lataniotis, S Marelli, B Sudret
International Journal for Uncertainty Quantification 10 (1), 55-82, 2020
812020
Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation
V Yaghoubi, S Marelli, B Sudret, T Abrahamsson
Probabilistic engineering mechanics 48, 39-58, 2017
692017
UQLab user manual–The input module
C Lataniotis, S Marelli, B Sudret
Report UQLab-V0, 9-102, 2015
552015
The system can't perform the operation now. Try again later.
Articles 1–20