Подписаться
Mark Schmidt
Mark Schmidt
Associate Professor of Computer Science, University of British Columbia
Подтвержден адрес электронной почты в домене cs.ubc.ca - Главная страница
Название
Процитировано
Процитировано
Год
Minimizing finite sums with the stochastic average gradient
M Schmidt, N Le Roux, F Bach
Mathematical Programming (MAPR), 2017, 2013
1354*2013
Linear Convergence of Gradient and Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition
H Karimi, J Nutini, M Schmidt
European Conference on Machine Learning (ECML), 2016
10652016
A stochastic gradient method with an exponential convergence rate for finite training sets
N Le Roux, M Schmidt, FR Bach
Advances in Neural Information Processing Systems (NeurIPS), 2012
10122012
Convergence rates of inexact proximal-gradient methods for convex optimization
M Schmidt, N Le Roux, FR Bach
Advances in Neural Information Processing Systems (NeurIPS), 2011
6332011
Fast optimization methods for l1 regularization: A comparative study and two new approaches
M Schmidt, G Fung, R Rosales
European Conference on Machine Learning (ECML), 2007
4522007
Hybrid deterministic-stochastic methods for data fitting
MP Friedlander, M Schmidt
SIAM Journal on Scientific Computing (SISC), 2012
4322012
Block-coordinate Frank-Wolfe optimization for structural SVMs
S Lacoste-Julien, M Jaggi, M Schmidt, P Pletscher
International Conference on Machine Learning (ICML), 2013
4302013
Accelerated training of conditional random fields with stochastic gradient methods
SVN Vishwanathan, NN Schraudolph, MW Schmidt, KP Murphy
International Conference on Machine Learning (ICML), 2006
4212006
Fast patch-based style transfer of arbitrary style
TQ Chen, M Schmidt
NeurIPS Workshop on Constructive Machine Learning, 2016
3942016
Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics
V Cevher, S Becker, M Schmidt
IEEE Signal Processing Magazine, 2014
3422014
Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm
MW Schmidt, E Berg, MP Friedlander, KP Murphy
International Conference on Artificial Intelligence and Statistics (AISTATS), 2009
3192009
Fast and faster convergence of SGD for over-parameterized models and an accelerated perceptron
S Vaswani, F Bach, M Schmidt
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
2842019
Learning graphical model structure using L1-regularization paths
M Schmidt, A Niculescu-Mizil, K Murphy
National Conference on Artificial Intelligence (AAAI), 2007
2792007
minFunc: unconstrained differentiable multivariate optimization in Matlab
M Schmidt
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html, 2005
258*2005
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
S Lacoste-Julien, M Schmidt, F Bach
arXiv preprint arXiv:1212.2002, 2012
2572012
Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection
J Nutini, M Schmidt, IH Laradji, M Friedlander, H Koepke
International Conference on Machine Learning (ICML), 2015
2522015
Modeling annotator expertise: Learning when everybody knows a bit of something
Y Yan, R Rosales, G Fung, MW Schmidt, GH Valadez, L Bogoni, L Moy, ...
International Conference on Artificial Intelligence and Statistics (AISTATS), 2010
2452010
Least squares optimization with l1-norm regularization
M Schmidt
CPSC 542B Course Project Report, 2005
2352005
Online Learning Rate Adaptation with Hypergradient Descent
AG Baydin, R Cornish, DM Rubio, M Schmidt, F Wood
International Conference on Learning Representations (ICLR), 2018
2342018
Segmenting brain tumors with conditional random fields and support vector machines
CH Lee, M Schmidt, A Murtha, A Bistritz, J Sander, R Greiner
Computer vision for biomedical image applications (CVBIA), 2005
2262005
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20