Alec Koppel
Alec Koppel
Research Scientist, Amazon
Подтвержден адрес электронной почты в домене amazon.com - Главная страница
Название
Процитировано
Процитировано
Год
A saddle point algorithm for networked online convex optimization
A Koppel, FY Jakubiec, A Ribeiro
IEEE Transactions on Signal Processing 63 (19), 5149-5164, 2015
1262015
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
A Simonetto, A Mokhtari, A Koppel, G Leus, A Ribeiro
IEEE Transactions on Signal Processing (submitted), 0
88*
Global convergence of policy gradient methods to (almost) locally optimal policies
K Zhang, A Koppel, H Zhu, T Basar
SIAM Journal on Control and Optimization 58 (6), 3586-3612, 2020
712020
Proximity without consensus in online multi-agent optimization
A Koppel, BM Sadler, A Ribeiro
Proc. Int. Conf. Accoustics Speech Signal Proces (submitted),, 2016
692016
A Decentralized Prediction-Correction Method for Networked Time-Varying Convex Optimization
A Simonetto, A Mokhtari, A Koppel, G Leus, A Ribeiro
Computational Advances in Multi-Sensor Adaptive Processing, IEEE …, 2015
572015
D4L: Decentralized Dynamic Discrminative Dictionary Learning
A Koppel, G Warnell, E Stump, A Ribeiro
IEEE Transactions on Signal and Info. Processing over Networks, 2015
382015
Decentralized online learning with kernels
A Koppel, S Paternain, C Richard, A Ribeiro
IEEE Transactions on Signal Processing 66 (12), 3240-3255, 2018
372018
Parsimonious online learning with kernels via sparse projections in function space
A Koppel, G Warnell, E Stump, A Ribeiro
The Journal of Machine Learning Research 20 (1), 83-126, 2019
35*2019
Parsimonious online learning with kernels via sparse projections in function space
A Koppel, G Warnell, E Stump, A Ribeiro
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
332017
Variational policy gradient method for reinforcement learning with general utilities
J Zhang, A Koppel, AS Bedi, C Szepesvari, M Wang
arXiv preprint arXiv:2007.02151, 2020
292020
On the sample complexity of actor-critic method for reinforcement learning with function approximation
H Kumar, A Koppel, A Ribeiro
arXiv preprint arXiv:1910.08412, 2019
292019
Online learning for characterizing unknown environments in ground robotic vehicle models
A Koppel, J Fink, G Warnell, E Stump, A Ribeiro
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2016
212016
A class of parallel doubly stochastic algorithms for large-scale learning
A Mokhtari, A Koppel, A Ribeiro
arXiv preprint arXiv:1606.04991, 2016
192016
Policy Evaluation in Continuous MDPs with Efficient Kernelized Gradient Temporal Difference
A Koppel, G Warnell, E Stump, P Stone, A Ribeiro.
IEEE Transactions on Automatic Control (submitted), 2017
18*2017
Doubly Random Parallel Stochastic Methods for Large Scale Learning
A Mokhtari, A Koppel, A Ribeiro
American Control Conference (submitted), 2016
182016
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
A Koppel, H Pradhan, K Rajawat
arXiv:2004.11094, 2020
172020
Asynchronous Decentralized Stochastic Optimization in Heterogeneous Networks
AS Bedi, A Koppel, K Rajawat
IEEE Trans. Signal Process (submitted)., 2017
16*2017
Projected Stochastic Primal-Dual Method for Constrained Online Learning with Kernels
A Koppel, K Zhang, H Zhu, TM Baser.
IEEE Trans. Signal Processing (submitted), 2018
142018
Prediction-correction methods for time-varying convex optimization
A Simonetto, A Koppel, A Mokhtari, G Leus, A Ribeiro
Proceedings of the Asilomar Conference on Signals, Systems, and Computers …, 2015
142015
Large-scale nonconvex stochastic optimization by doubly stochastic successive convex approximation
A Mokhtari, A Koppel, G Scutari, A Ribeiro
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
132017
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20