Подписаться
Alexander Gasnikov
Alexander Gasnikov
Подтвержден адрес электронной почты в домене mipt.ru
Название
Процитировано
Процитировано
Год
Введение в математическое моделирование транспортных потоков
А Гасников
Litres, 2022
537*2022
Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm
P Dvurechensky, A Gasnikov, A Kroshnin
International conference on machine learning, 1367-1376, 2018
2472018
A dual approach for optimal algorithms in distributed optimization over networks
CA Uribe, S Lee, A Gasnikov, A Nedić
2020 Information Theory and Applications Workshop (ITA), 1-37, 2020
1462020
Decentralize and randomize: Faster algorithm for Wasserstein barycenters
P Dvurechenskii, D Dvinskikh, A Gasnikov, C Uribe, A Nedich
Advances in Neural Information Processing Systems 31, 2018
1042018
Стохастические градиентные методы с неточным оракулом
АВ Гасников, ПЕ Двуреченский, ЮЕ Нестеров
Труды Московского физико-технического института 8 (1 (29)), 41-91, 2016
99*2016
Современные численные методы оптимизации. Метод универсального градиентного спуска
АВ Гасников
Федеральное государственное автономное образовательное учреждение высшего …, 2018
982018
Stochastic intermediate gradient method for convex problems with stochastic inexact oracle
P Dvurechensky, A Gasnikov
Journal of Optimization Theory and Applications 171, 121-145, 2016
982016
On the complexity of approximating Wasserstein barycenters
A Kroshnin, N Tupitsa, D Dvinskikh, P Dvurechensky, A Gasnikov, C Uribe
International conference on machine learning, 3530-3540, 2019
972019
Efficient numerical methods for entropy-linear programming problems
AV Gasnikov, EB Gasnikova, YE Nesterov, AV Chernov
Computational Mathematics and Mathematical Physics 56, 514-524, 2016
80*2016
Near Optimal Methods for Minimizing Convex Functions with Lipschitz -th Derivatives
A Gasnikov, P Dvurechensky, E Gorbunov, E Vorontsova, ...
Conference on Learning Theory, 1392-1393, 2019
682019
Learning supervised pagerank with gradient-based and gradient-free optimization methods
L Bogolubsky, P Dvurechenskii, A Gasnikov, G Gusev, Y Nesterov, ...
Advances in neural information processing systems 29, 2016
662016
Fast primal-dual gradient method for strongly convex minimization problems with linear constraints
A Chernov, P Dvurechensky, A Gasnikov
Discrete Optimization and Operations Research: 9th International Conference …, 2016
642016
Optimal decentralized distributed algorithms for stochastic convex optimization
E Gorbunov, D Dvinskikh, A Gasnikov
arXiv preprint arXiv:1911.07363, 2019
622019
Decentralized and parallel primal and dual accelerated methods for stochastic convex programming problems
D Dvinskikh, A Gasnikov
Journal of Inverse and Ill-posed Problems 29 (3), 385-405, 2021
612021
Stochastic optimization with heavy-tailed noise via accelerated gradient clipping
E Gorbunov, M Danilova, A Gasnikov
Advances in Neural Information Processing Systems 33, 15042-15053, 2020
612020
Primal–dual accelerated gradient methods with small-dimensional relaxation oracle
Y Nesterov, A Gasnikov, S Guminov, P Dvurechensky
Optimization Methods and Software 36 (4), 773-810, 2021
592021
On accelerated alternating minimization
S Guminov, P Dvurechensky, A Gasnikov
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik 2695 (2695), 2020
592020
Universal method for stochastic composite optimization problems
AV Gasnikov, YE Nesterov
Computational Mathematics and Mathematical Physics 58, 48-64, 2018
592018
Distributed computation of Wasserstein barycenters over networks
CA Uribe, D Dvinskikh, P Dvurechensky, A Gasnikov, A Nedić
2018 IEEE Conference on Decision and Control (CDC), 6544-6549, 2018
582018
Optimal algorithms for distributed optimization
CA Uribe, S Lee, A Gasnikov, A Nedić
arXiv preprint arXiv:1712.00232, 2017
542017
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20