Follow
Alex Lamb
Alex Lamb
Microsoft Research (NYC), Université de Montréal, Google Brain, Amazon, Twitch PhD Fellow
Verified email at microsoft.com - Homepage
Title
Cited by
Cited by
Year
Adversarially learned inference
V Dumoulin, I Belghazi, B Poole, O Mastropietro, A Lamb, M Arjovsky, ...
arXiv preprint arXiv:1606.00704, 2016
18202016
Manifold mixup: Better representations by interpolating hidden states
A Lamb, V Verma, C Beckham, A Najafi, I Mitliagkas, A Courville, ...
International Conference on Machine Learning (ICML) 2019, and arXiv preprint …, 2018
1467*2018
Theano: A Python framework for fast computation of mathematical expressions
R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ...
arXiv e-prints, arXiv: 1605.02688, 2016
1206*2016
Interpolation consistency training for semi-supervised learning
V Verma, A Lamb, J Kannala, Y Bengio, D Lopez-Paz
International Joint Conference on Artificial Intelligence (IJCAI) 2019, and …, 2019
8172019
Professor forcing: A new algorithm for training recurrent networks
A Lamb, A Goyal, Y Zhang, S Zhang, AC Courville, Y Bengio
Advances in neural information processing systems 29, 4601-4609, 2016
7322016
Deep learning for classical japanese literature
T Clanuwat, M Bober-Irizar, A Kitamoto, A Lamb, K Yamamoto, D Ha
arXiv preprint arXiv:1812.01718, 2018
7152018
Separating fact from fear: Tracking flu infections on twitter
A Lamb, M Paul, M Dredze
Proceedings of the 2013 Conference of the North American Chapter of the …, 2013
3892013
Recurrent independent mechanisms
A Goyal, A Lamb, J Hoffmann, S Sodhani, S Levine, Y Bengio, ...
arXiv preprint arXiv:1909.10893, 2019
3512019
Variance reduction in sgd by distributed importance sampling
G Alain, A Lamb, C Sankar, A Courville, Y Bengio
arXiv preprint arXiv:1511.06481, 2015
2252015
Graphmix: Improved training of gnns for semi-supervised learning
V Verma, M Qu, K Kawaguchi, A Lamb, Y Bengio, J Kannala, J Tang
Proceedings of the AAAI conference on artificial intelligence 35 (11), 10024 …, 2021
1762021
Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy
A Lamb, V Verma, J Kannala, Y Bengio
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security …, 2019
1082019
KuroNet: Regularized Residual U-Nets for End-to-End Kuzushiji Character Recognition
A Lamb, T Clanuwat, A Kitamoto
Springer Nature Computer Science and ICDAR 2019 (Oral), 2020
101*2020
Coordination among neural modules through a shared global workspace
A Goyal, A Didolkar, A Lamb, K Badola, NR Ke, N Rahaman, J Binas, ...
arXiv preprint arXiv:2103.01197, 2021
942021
Discriminative Regularization for Generative Models
A Lamb, V Dumoulin, A Courville
DeepVision Workshop (CVPR), 2016
852016
On adversarial mixup resynthesis
C Beckham, S Honari, V Verma, AM Lamb, F Ghadiri, RD Hjelm, Y Bengio, ...
Advances in neural information processing systems 32, 2019
752019
Learning to combine top-down and bottom-up signals in recurrent neural networks with attention over modules
S Mittal, A Lamb, A Goyal, V Voleti, M Shanahan, G Lajoie, M Mozer, ...
International Conference on Machine Learning, 6972-6986, 2020
722020
State-reification networks: Improving generalization by modeling the distribution of hidden representations
A Lamb, J Binas, A Goyal, S Subramanian, I Mitliagkas, D Kazakov, ...
International Conference on Machine Learning (ICML) 2019, 2019
69*2019
Object files and schemata: Factorizing declarative and procedural knowledge in dynamical systems
A Goyal, A Lamb, P Gampa, P Beaudoin, S Levine, C Blundell, Y Bengio, ...
arXiv preprint arXiv:2006.16225, 2020
62*2020
Discrete-Valued Neural Communication
D Liu, A Lamb, K Kawaguchi, A Goyal, C Sun, MC Mozer, Y Bengio
arXiv preprint arXiv:2107.02367, 2021
512021
Guaranteed discovery of controllable latent states with multi-step inverse models
A Lamb, R Islam, Y Efroni, A Didolkar, D Misra, D Foster, L Molu, R Chari, ...
arXiv preprint arXiv:2207.08229, 2022
34*2022
The system can't perform the operation now. Try again later.
Articles 1–20