Minimum stein discrepancy estimators A Barp, FX Briol, A Duncan, M Girolami, L Mackey Advances in Neural Information Processing Systems 32, 2019 | 69 | 2019 |
Stein point markov chain monte carlo WY Chen, A Barp, FX Briol, J Gorham, M Girolami, L Mackey, C Oates International Conference on Machine Learning, 1011-1021, 2019 | 55 | 2019 |
Statistical inference for generative models with maximum mean discrepancy FX Briol, A Barp, AB Duncan, M Girolami arXiv preprint arXiv:1906.05944, 2019 | 43 | 2019 |
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments A Anastasiou, A Barp, FX Briol, B Ebner, RE Gaunt, F Ghaderinezhad, ... arXiv preprint arXiv:2105.03481, 2021 | 42 | 2021 |
Geometry and dynamics for Markov chain Monte Carlo A Barp, FX Briol, AD Kennedy, M Girolami Annual Review of Statistics and Its Application 5, 451-471, 2018 | 41 | 2018 |
Metrizing weak convergence with maximum mean discrepancies CJ Simon-Gabriel, A Barp, B Schölkopf, L Mackey arXiv preprint arXiv:2006.09268, 2020 | 32 | 2020 |
A Riemannian-Stein kernel method A Barp, C Oates, E Porcu, M Girolami arXiv preprint arXiv:1810.04946 1 (5), 6-9, 2018 | 19 | 2018 |
A Riemann–Stein kernel method A Barp, CJ Oates, E Porcu, M Girolami Bernoulli 28 (4), 2181-2208, 2022 | 17* | 2022 |
Hamiltonian Monte Carlo on symmetric and homogeneous spaces via symplectic reduction A Barp, A Kennedy, M Girolami arXiv preprint arXiv:1903.02699, 2019 | 15 | 2019 |
Optimization on manifolds: A symplectic approach G França, A Barp, M Girolami, MI Jordan arXiv preprint arXiv:2107.11231, 2021 | 12 | 2021 |
A numerical study of the 3D random interchange and random loop models A Barp, EG Barp, FX Briol, D Ueltschi Journal of Physics A: Mathematical and Theoretical 48 (34), 345002, 2015 | 12 | 2015 |
Lancelot Da Costa, Guilherme França, Karl Friston, Mark Girolami, Michael I. Jordan, and Grigorios A. Pavliotis.“Geometric Methods for Sampling, Optimisation, Inference and … A Barp arXiv preprint arXiv:2203.10592, 2022 | 10 | 2022 |
A unifying and canonical description of measure-preserving diffusions A Barp, S Takao, M Betancourt, A Arnaudon, M Girolami arXiv preprint arXiv:2105.02845, 2021 | 9 | 2021 |
Vector-valued control variates Z Sun, A Barp, FX Briol arXiv preprint arXiv:2109.08944, 2021 | 8 | 2021 |
Hamiltonian Monte Carlo on Lie groups and constrained mechanics on homogeneous manifolds A Barp Geometric Science of Information: 4th International Conference, GSI 2019 …, 2019 | 8 | 2019 |
Geometric methods for sampling, optimization, inference, and adaptive agents GA Pavliotisc Geometry and Statistics, 21, 2022 | 7 | 2022 |
Irreversible Langevin MCMC on lie groups A Arnaudon, A Barp, S Takao Geometric Science of Information: 4th International Conference, GSI 2019 …, 2019 | 7 | 2019 |
The bracket geometry of statistics AA Barp Imperial College London, 2020 | 6 | 2020 |
Targeted separation and convergence with kernel discrepancies A Barp, CJ Simon-Gabriel, M Girolami, L Mackey arXiv preprint arXiv:2209.12835, 2022 | 3 | 2022 |
Posterior integration on a Riemannian manifold C Oates, A Barp, M Girolami arXiv preprint arXiv:1712.01793, 2017 | 3 | 2017 |