Natural language descriptions of deep visual features E Hernandez, S Schwettmann, D Bau, T Bagashvili, A Torralba, J Andreas International Conference on Learning Representations, 2021 | 108 | 2021 |
Invariant representations of mass in the human brain S Schwettmann, JB Tenenbaum, N Kanwisher Elife 8, e46619, 2019 | 54 | 2019 |
The role of multiple neuromodulators in reinforcement learning that is based on competition between eligibility traces MA Huertas, SE Schwettmann, HZ Shouval Frontiers in synaptic neuroscience 8, 37, 2016 | 19 | 2016 |
Toward a visual concept vocabulary for gan latent space S Schwettmann, E Hernandez, D Bau, S Klein, J Andreas, A Torralba Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 15 | 2021 |
Multimodal neurons in pretrained text-only transformers S Schwettmann, N Chowdhury, S Klein, D Bau, A Torralba Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 11 | 2023 |
Find: A function description benchmark for evaluating interpretability methods S Schwettmann, T Shaham, J Materzynska, N Chowdhury, S Li, J Andreas, ... Advances in Neural Information Processing Systems 36, 2024 | 10 | 2024 |
Evidence for an Intuitive Physics Engine in the Human Brain. S Schwettmann, J Fischer, J Tenenbaum, N Kanwisher CogSci, 2018 | 10 | 2018 |
Stable reinforcement learning via temporal competition between LTP and LTD traces MA Huertas, S Schwettmann, A Kirkwood, H Shouval BMC Neuroscience 15, 1-1, 2014 | 6 | 2014 |
A multimodal automated interpretability agent TR Shaham, S Schwettmann, F Wang, A Rajaram, E Hernandez, ... Forty-first International Conference on Machine Learning, 2024 | 5 | 2024 |
Neural representation of the intuitive physical dimension of mass S Schwettmann, J Fischer, J Tenenbaum, N Kanwisher Journal of Vision 18 (10), 731-731, 2018 | 2 | 2018 |
Automatic Discovery of Visual Circuits A Rajaram, N Chowdhury, A Torralba, J Andreas, S Schwettmann arXiv preprint arXiv:2404.14349, 2024 | 1 | 2024 |
A Function Interpretation Benchmark for Evaluating Interpretability Methods S Schwettmann, TR Shaham, J Materzynska, N Chowdhury, S Li, ... arXiv preprint arXiv:2309.03886, 2023 | 1 | 2023 |
A Multimodal Automated Interpretability Agent T Rott Shaham, S Schwettmann, F Wang, A Rajaram, E Hernandez, ... arXiv e-prints, arXiv: 2404.14394, 2024 | | 2024 |
An Alternative to Regulation: The Case for Public AI N Vincent, D Bau, S Schwettmann, J Tan arXiv preprint arXiv:2311.11350, 2023 | | 2023 |
Generalizable Representations for Vision in Biological and Artificial Neural Networks SE Schwettmann Massachusetts Institute of Technology, 2021 | | 2021 |
Latent Compass: Creation by Navigation S Schwettmann, H Strobelt, M Martino arXiv preprint arXiv:2012.14283, 2020 | | 2020 |