Follow
Yassine LAGUEL
Yassine LAGUEL
Université Côte d'Azur
Verified email at univ-cotedazur.fr - Homepage
Title
Cited by
Cited by
Year
A superquantile approach to federated learning with heterogeneous devices
Y Laguel, K Pillutla, J Malick, Z Harchaoui
2021 55th Annual Conference on Information Sciences and Systems (CISS), 1-6, 2021
432021
Device heterogeneity in federated learning: A superquantile approach
Y Laguel, K Pillutla, J Malick, Z Harchaoui
arXiv preprint arXiv:2002.11223, 2020
282020
Superquantiles at work: Machine learning applications and efficient subgradient computation
Y Laguel, K Pillutla, J Malick, Z Harchaoui
Set-Valued and Variational Analysis 29 (4), 967-996, 2021
222021
Randomized progressive hedging methods for multi-stage stochastic programming
G Bareilles, Y Laguel, D Grishchenko, F Iutzeler, J Malick
Annals of Operations Research 295 (2), 535-560, 2020
222020
First-order optimization for superquantile-based supervised learning
Y Laguel, J Malick, Z Harchaoui
2020 IEEE 30th International Workshop on Machine Learning for Signal …, 2020
182020
Federated learning with superquantile aggregation for heterogeneous data
K Pillutla, Y Laguel, J Malick, Z Harchaoui
Machine Learning 113 (5), 2955-3022, 2024
152024
On the convexity of level-sets of probability functions
Y Laguel, W Van Ackooij, J Malick, G Ramalho
arXiv preprint arXiv:2102.04052, 2021
72021
Differentially private federated quantiles with the distributed discrete gaussian mechanism
K Pillutla, Y Laguel, J Malick, Z Harchaoui
International Workshop on Federated Learning: Recent Advances and New Challenges, 2022
62022
Superquantile-based learning: a direct approach using gradient-based optimization
Y Laguel, J Malick, Z Harchaoui
Journal of Signal Processing Systems 94 (2), 161-177, 2022
62022
Federated learning with heterogeneous data: A superquantile optimization approach
K Pillutla, Y Laguel, J Malick, Z Harchaoui
42022
Push–pull with device sampling
YG Hsieh, Y Laguel, F Iutzeler, J Malick
IEEE Transactions on Automatic Control 68 (12), 7179-7194, 2023
32023
Tackling distribution shifts in federated learning with superquantile aggregation
K Pillutla, Y Laguel, J Malick, Z Harchaoui
NeurIPS 2022 Workshop on Distribution Shifts (DistShift), 2022
22022
Chance constrained problems: a bilevel convex optimization perspective
Y Laguel, J Malick, W Ackooij
arXiv preprint arXiv:2103.10832, 2021
22021
Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective
Y Laguel, J Malick, W van Ackooij
Computational Optimization and Applications, 1-29, 2024
12024
High probability and risk-averse guarantees for stochastic saddle point problems
Y Laguel, NS Aybat, M Gürbüzbalaban
arXiv preprint arXiv:2304.00444, 2023
12023
High-probability complexity guarantees for nonconvex minimax problems
Y Laguel, Y Syed, NS Aybat, M Gürbüzbalaban
arXiv preprint arXiv:2405.14130, 2024
2024
High Probability and Risk-Averse Guarantees for a Stochastic Accelerated Primal-Dual Method
Y Laguel, NS Aybat, M Gürbüzbalaban
arXiv preprint arXiv:2304.00444, 2023
2023
convex optimization for risk-sensitive learning
Y Laguel
Université Grenoble Alpes [2020-....], 2021
2021
High-probability complexity bounds for stochastic non-convex minimax optimization
Y Laguel, Y Syed, N Aybat, M Gurbuzbalaban
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 0
The system can't perform the operation now. Try again later.
Articles 1–19