Lagrangian decomposition for neural network verification R Bunel, A De Palma, A Desmaison, K Dvijotham, P Kohli, P Torr, ... Conference on Uncertainty in Artificial Intelligence, 370-379, 2020 | 41 | 2020 |
Communication-avoiding parallel minimum cuts and connected components L Gianinazzi, P Kalvoda, A De Palma, M Besta, T Hoefler ACM SIGPLAN Notices 53 (1), 219-232, 2018 | 33 | 2018 |
Scaling the Convex Barrier with Active Sets A De Palma, HS Behl, R Bunel, PHS Torr, MP Kumar International Conference on Learning Representations, 2021 | 29 | 2021 |
Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition A De Palma, R Bunel, A Desmaison, K Dvijotham, P Kohli, PHS Torr, ... arXiv preprint arXiv:2104.06718, 2021 | 26 | 2021 |
In Defense of the Unitary Scalarization for Deep Multi-Task Learning V Kurin, A De Palma, I Kostrikov, S Whiteson, MP Kumar arXiv preprint arXiv:2201.04122, 2022 | 15 | 2022 |
Sampling acquisition functions for batch Bayesian optimization A De Palma, C Mendler-Dünner, T Parnell, A Anghel, H Pozidis BNP@NeurIPS 2018 workshop, 2019 | 14 | 2019 |
Benchmarking and Optimization of Gradient Boosted Decision Tree Algorithms A Anghel, N Papandreou, T Parnell, A De Palma, H Pozidis Workshop on Systems for ML at NeurIPS 2018, 2018 | 14 | 2018 |
Scaling the Convex Barrier with Sparse Dual Algorithms A De Palma, HS Behl, R Bunel, PHS Torr, MP Kumar arXiv preprint arXiv:2101.05844, 2021 | 6 | 2021 |
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound A De Palma, R Bunel, K Dvijotham, MP Kumar, R Stanforth ICML 2022 Workshop on Formal Verification of Machine Learning, 2022 | 3 | 2022 |
Distributed stratified locality sensitive hashing for critical event prediction in the cloud A De Palma, E Hemberg, UM O'Reilly Workshop on Machine Learning for Health at NeurIPS 2017, 2017 | 2 | 2017 |