Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers Y Bugeaud, M Mignotte, S Siksek Annals of mathematics, 969-1018, 2006 | 521 | 2006 |

Elliptic curves over real quadratic fields are modular N Freitas, BV Le Hung, S Siksek Inventiones mathematicae 201 (1), 159-206, 2015 | 144 | 2015 |

Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation Y Bugeaud, M Mignotte, S Siksek Compositio Mathematica 142 (1), 31-62, 2006 | 141 | 2006 |

Explicit 4-descents on an elliptic curve JR Merriman, S Siksek, NP Smart Acta arithmetica 77 (4), 385-404, 1996 | 94 | 1996 |

The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields N Freitas, S Siksek Compositio Mathematica 151 (8), 1395-1415, 2015 | 89 | 2015 |

Infinite descent on elliptic curves S Siksek The Rocky Mountain Journal of Mathematics, 1501-1538, 1995 | 87 | 1995 |

Integral points on hyperelliptic curves Y Bugeaud, M Mignotte, S Siksek, M Stoll, S Tengely Algebra & Number Theory 2 (8), 859-885, 2008 | 82* | 2008 |

Height difference bounds for elliptic curves over number fields JE Cremona, M Prickett, S Siksek Journal of Number Theory 116 (1), 42-68, 2006 | 78 | 2006 |

Fibonacci numbers at most one away from a perfect power F Luca, Y Bugeaud, M Mignotte, S Siksek Elemente der Mathematik 63 (2), 65-75, 2008 | 70 | 2008 |

The modular approach to Diophantine equations H Cohen, S Siksek Number Theory: Volume II: Analytic and Modern Tools, 495-527, 2007 | 58 | 2007 |

ON THE DIOPHANTINE EQUATION x^{2} + C = 2y^{n}.FS MURIEFAH, F LUCA, S SIKSEK, S TENGELY International Journal of Number Theory 5 (6), 2009 | 57* | 2009 |

Explicit Chabauty over number fields S Siksek Algebra & Number Theory 7 (4), 765-793, 2013 | 51 | 2013 |

Fermat’s last theorem over some small real quadratic fields N Freitas, S Siksek Algebra & Number Theory 9 (4), 875-895, 2015 | 48 | 2015 |

On happy numbers E El-Sedy, S Siksek The Rocky Mountain Journal of Mathematics, 565-570, 2000 | 47 | 2000 |

Criteria for Irreducibility of mod Representations of Frey Curves N Freitas, S Siksek Journal de théorie des nombres de Bordeaux 27 (1), 67-76, 2015 | 46 | 2015 |

Chabauty for symmetric powers of curves S Siksek Algebra & Number Theory 3 (2), 209-236, 2009 | 45 | 2009 |

Perfect powers expressible as sums of two cubes I Chen, S Siksek Journal of Algebra 322 (3), 638-656, 2009 | 39 | 2009 |

On factorials expressible as sums of at most three Fibonacci numbers F Luca, S Siksek Proceedings of the Edinburgh Mathematical Society 53 (3), 747-763, 2010 | 38 | 2010 |

On the asymptotic Fermat’s last theorem over number fields MH Şengün, S Siksek Commentarii Mathematici Helvetici 93 (2), 359-375, 2018 | 37 | 2018 |

A multi-Frey approach to some multi-parameter families of Diophantine equations Y Bugeaud, M Mignotte, S Siksek Canadian Journal of Mathematics 60 (3), 491-519, 2008 | 37 | 2008 |