Подписаться
Piotr Przybyła
Piotr Przybyła
TALN, Universitat Pompeu Fabra / Institute of Computer Science, Polish Academy of Sciences
Подтвержден адрес электронной почты в домене upf.edu
Название
Процитировано
Процитировано
Год
Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error
A Bannach-Brown, P Przybyła, J Thomas, ASC Rice, S Ananiadou, J Liao, ...
Systematic reviews 8 (1), 23, 2019
185*2019
Capturing the Style of Fake News
P Przybyla
Proceedings of the AAAI Conference on Artificial Intelligence 34 (01), 490-497, 2020
1582020
Prioritising references for systematic reviews with RobotAnalyst: a user study
P Przybyła, AJ Brockmeier, G Kontonatsios, MA Le Pogam, J McNaught, ...
Research synthesis methods 9 (3), 470-488, 2018
124*2018
Thalia: Semantic search engine for biomedical abstracts
AJ Soto, P Przybyła, S Ananiadou
Bioinformatics, 2018
702018
Improving reference prioritisation with PICO recognition
AJ Brockmeier, M Ju, P Przybyła, S Ananiadou
BMC Medical Informatics and Decision Making 19 (1), 256, 2019
632019
Text mining resources for the life sciences
P Przybyła, M Shardlow, S Aubin, R Bossy, R Eckart de Castilho, ...
Database 2016, baw145, 2016
582016
A semi-supervised approach using label propagation to support citation screening
G Kontonatsios, AJ Brockmeier, P Przybyła, J McNaught, T Mu, ...
Journal of biomedical informatics 72, 67-76, 2017
532017
The CLEF-2024 CheckThat! Lab: Check-Worthiness, Subjectivity, Persuasion, Roles, Authorities, and Adversarial Robustness
A Barrón-Cedeño, F Alam, T Chakraborty, T Elsayed, P Nakov, P Przybyła, ...
European Conference on Information Retrieval, 449-458, 2024
332024
When classification accuracy is not enough: Explaining news credibility assessment
P Przybyła, AJ Soto
Information Processing & Management 58 (5), 102653, 2021
282021
Overview of the CLEF-2024 CheckThat! Lab: Check-worthiness, subjectivity, persuasion, roles, authorities and adversarial robustness
A Barrón-Cedeño, F Alam, JM Struß, P Nakov, T Chakraborty, T Elsayed, ...
Experimental IR Meets Multilinguality, Multimodality, and Interaction …, 2024
202024
The IPIPAN team participation in the check-worthiness task of the CLEF2019 CheckThat! Lab
J Gąsior, P Przybyła
142019
I’ve Seen Things You Machines Wouldn’t Believe: Measuring Content Predictability to Identify Automatically-Generated Text
P Przybyła, N Duran-Silva, S Egea-Gómez
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023). CEUR …, 2023
122023
Boosting Question Answering by Deep Entity Recognition
P Przybyła
arXiv preprint arXiv:1605.08675, 2016
122016
What do your look-alikes say about you? Exploiting strong and weak similarities for author profiling.
P Przybyła, P Teisseyre
Proceedings of CLEF, 2015
12*2015
BODEGA: Benchmark for Adversarial Example Generation in Credibility Assessment
P Przybyła, A Shvets, H Saggion
arXiv preprint arXiv:2303.08032, 2023
11*2023
Multi-Word Lexical Simplification
P Przybyła, M Shardlow
Proceedings of the 28th International Conference on Computational …, 2020
112020
Investigating Text Simplification Evaluation
L Vásquez-Rodríguez, M Shardlow, P Przybyła, S Ananiadou
arXiv preprint arXiv:2107.13662, 2021
102021
Analysing utterances in polish parliament to predict speaker’s background
P Przybyła, P Teisseyre
Journal of Quantitative Linguistics 21 (4), 350-376, 2014
102014
How big is big enough? Unsupervised word sense disambiguation using a very large corpus
P Przybyła
arXiv preprint arXiv:1710.07960, 2017
92017
Detecting Bot Accounts on Twitter by Measuring Message Predictability
P Przybyła
CLEF 2019 Labs and Workshops, Notebook Papers, 2019
82019
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20