Fabian Pedregosa
Fabian Pedregosa
Verified email at google.com - Homepage
Cited by
Cited by
Scikit-learn: Machine learning in Python
F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ...
the Journal of machine Learning research 12, 2825-2830, 2011
SciPy 1.0: fundamental algorithms for scientific computing in Python
P Virtanen, R Gommers, TE Oliphant, M Haberland, T Reddy, ...
Nature methods 17 (3), 261-272, 2020
API design for machine learning software: experiences from the scikit-learn project
L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ...
arXiv preprint arXiv:1309.0238, 2013
Machine learning for neuroimaging with scikit-learn
A Abraham, F Pedregosa, M Eickenberg, P Gervais, A Mueller, J Kossaifi, ...
Frontiers in neuroinformatics 8, 14, 2014
SymPy: symbolic computing in Python
A Meurer, CP Smith, M Paprocki, O ČertŪk, SB Kirpichev, M Rocklin, ...
PeerJ Computer Science 3, e103, 2017
Scikit-learn: Machine learning without learning the machinery
G Varoquaux, L Buitinck, G Louppe, O Grisel, F Pedregosa, A Mueller
GetMobile: Mobile Computing and Communications 19 (1), 29-33, 2015
Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
G Varoquaux, A Gramfort, F Pedregosa, V Michel, B Thirion
Biennial International Conference on information processing in medical†…, 2011
Hyperparameter optimization with approximate gradient
F Pedregosa
Proceedings of the 33nd International Conference on Machine Learning, ICML†…, 2016
ASAGA: Asynchronous parallel SAGA
R Leblond, F Pedregosa, S Lacoste-Julien
Proceedings of the 20th International Conference on Artificial Intelligence†…, 2017
Data-driven HRF estimation for encoding and decoding models
F Pedregosa, M Eickenberg, P Ciuciu, B Thirion, A Gramfort
NeuroImage 104, 209-220, 2015
Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding
V Borghesani, F Pedregosa, M Buiatti, A Amadon, E Eger, M Piazza
NeuroImage 143, 128-140, 2016
Scikit-learn: Machine learning in Python. v. 12
Improved asynchronous parallel optimization analysis for stochastic incremental methods
R Leblond, F Pedregosa, S Lacoste-Julien
Journal of Machine Learning Research 19 (81), 2018
Feature extraction and supervised learning on fMRI: from practice to theory
F Pedregosa-Izquierdo
Universitť Pierre et Marie Curie-Paris VI, 2015
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization
F Pedregosa, R Leblond, S Lacoste-Julien
Advances in Neural Information Processing Systems 30, 2017
On the consistency of ordinal regression methods
F Pedregosa, F Bach, A Gramfort
Journal of Machine Learning Research 18, 1-35, 2017
The difficulty of training sparse neural networks
U Evci, F Pedregosa, A Gomez, E Elsen
arXiv preprint arXiv:1906.10732, 2019
Linearly Convergent Frank-Wolfe with Backtracking Line-Search
F Pedregosa, A Askari, G Negiar, M Jaggi
Proceedings of the 23rd International Conference on Artificial Intelligence†…, 2020
On the interplay between noise and curvature and its effect on optimization and generalization
V Thomas, F Pedregosa, B MerriŽnboer, PA Manzagol, Y Bengio, ...
International Conference on Artificial Intelligence and Statistics, 3503-3513, 2020
Frank-Wolfe Splitting via Augmented Lagrangian Method
G Gidel, F Pedregosa, S Lacoste-Julien
Proceedings of the Twenty-First International Conference on Artificial†…, 2018
The system can't perform the operation now. Try again later.
Articles 1–20