Follow
Abhinav Vishnu
Abhinav Vishnu
Senior Fellow, AMD
Verified email at amd.com - Homepage
Title
Cited by
Cited by
Year
Deep learning for computational chemistry
GB Goh, NO Hodas, A Vishnu
Journal of computational chemistry 38 (16), 1291-1307, 2017
8902017
NWChem: Past, present, and future
E Apra, EJ Bylaska, WA De Jong, N Govind, K Kowalski, TP Straatsma, ...
The Journal of chemical physics 152 (18), 2020
6282020
A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems
A Hameed, A Khoshkbarforoushha, R Ranjan, PP Jayaraman, J Kolodziej, ...
Computing 98, 751-774, 2016
4642016
An overview of energy efficiency techniques in cluster computing systems
GL Valentini, W Lassonde, SU Khan, N Min-Allah, SA Madani, J Li, ...
Cluster Computing 16, 3-15, 2013
2912013
Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models
GB Goh, C Siegel, A Vishnu, NO Hodas, N Baker
arXiv preprint arXiv:1706.06689, 2017
2742017
GossipGraD: Scalable Deep Learning using Gossip Communication based Asynchronous Gradient Descent
J Daily, A Vishnu, T Warfel, V Amatya
https://arxiv.org/pdf/1803.05880.pdf, 2018
222*2018
NWChem
E Apra, EJ Bylaska, WA de Jong, N Govind, K Kowalski, TP Straatsma, ...
American Institute of Physics, 2020
2162020
A survey on resource allocation in high performance distributed computing systems
H Hussain, SUR Malik, A Hameed, SU Khan, G Bickler, N Min-Allah, ...
Parallel Computing 39 (11), 709-736, 2013
2062013
CFDNet: A deep learning-based accelerator for fluid simulations
O Obiols-Sales, A Vishnu, N Malaya, A Chandramowliswharan
Proceedings of the 34th ACM international conference on supercomputing, 1-12, 2020
1792020
Smiles2vec: An interpretable general-purpose deep neural network for predicting chemical properties
GB Goh, NO Hodas, C Siegel, A Vishnu
arXiv preprint arXiv:1712.02034, 2017
1782017
Desh: deep learning for system health prediction of lead times to failure in hpc
A Das, F Mueller, C Siegel, A Vishnu
Proceedings of the 27th international symposium on high-performance parallel …, 2018
1172018
Designing topology-aware collective communication algorithms for large scale infiniband clusters: Case studies with scatter and gather
K Kandalla, H Subramoni, A Vishnu, DK Panda
2010 IEEE International Symposium on Parallel & Distributed Processing …, 2010
1102010
Using rule-based labels for weak supervised learning: a ChemNet for transferable chemical property prediction
GB Goh, C Siegel, A Vishnu, N Hodas
Proceedings of the 24th ACM SIGKDD international conference on knowledge …, 2018
1022018
Building multirail infiniband clusters: Mpi-level design and performance evaluation
J Liu, A Vishnu, DK Panda
SC'04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, 33-33, 2004
982004
Kleio: A hybrid memory page scheduler with machine intelligence
TD Doudali, S Blagodurov, A Vishnu, S Gurumurthi, A Gavrilovska
Proceedings of the 28th International Symposium on High-Performance Parallel …, 2019
772019
Performance analysis of data intensive cloud systems based on data management and replication: a survey
SUR Malik, SU Khan, SJ Ewen, N Tziritas, J Kolodziej, AY Zomaya, ...
Distributed and Parallel Databases 34, 179-215, 2016
772016
Iso-energy-efficiency: An approach to power-constrained parallel computation
S Song, CY Su, R Ge, A Vishnu, KW Cameron
2011 IEEE International Parallel & Distributed Processing Symposium, 128-139, 2011
722011
Distributed tensorflow with MPI
A Vishnu, C Siegel, J Daily
arXiv preprint arXiv:1603.02339, 2016
712016
How much chemistry does a deep neural network need to know to make accurate predictions?
GB Goh, C Siegel, A Vishnu, N Hodas, N Baker
2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 1340-1349, 2018
702018
Scaling deep learning workloads: Nvidia dgx-1/pascal and intel knights landing
NA Gawande, JA Daily, C Siegel, NR Tallent, A Vishnu
Future Generation Computer Systems 108, 1162-1172, 2020
592020
The system can't perform the operation now. Try again later.
Articles 1–20