Using machine learning to focus iterative optimization F Agakov, E Bonilla, J Cavazos, B Franke, G Fursin, MFP O'Boyle, ... International Symposium on Code Generation and Optimization (CGO'06), 11 pp.-305, 2006 | 469 | 2006 |
Auto-tuning a high-level language targeted to GPU codes S Grauer-Gray, L Xu, R Searles, S Ayalasomayajula, J Cavazos 2012 innovative parallel computing (InPar), 1-10, 2012 | 361 | 2012 |
Rapidly selecting good compiler optimizations using performance counters J Cavazos, G Fursin, F Agakov, E Bonilla, MFP O'Boyle, O Temam International Symposium on Code Generation and Optimization (CGO'07), 185-197, 2007 | 289 | 2007 |
Iterative optimization in the polyhedral model: Part II, multidimensional time LN Pouchet, C Bastoul, A Cohen, J Cavazos ACM SIGPLAN Notices 43 (6), 90-100, 2008 | 200 | 2008 |
Method-specific dynamic compilation using logistic regression J Cavazos, MFP O'boyle ACM SIGPLAN Notices 41 (10), 229-240, 2006 | 128 | 2006 |
Mitigating the compiler optimization phase-ordering problem using machine learning S Kulkarni, J Cavazos Proceedings of the ACM international conference on Object oriented …, 2012 | 119 | 2012 |
Predictive modeling in a polyhedral optimization space E Park, J Cavazos, LN Pouchet, C Bastoul, A Cohen, P Sadayappan International journal of parallel programming 41 (5), 704-750, 2013 | 113 | 2013 |
Inducing heuristics to decide whether to schedule J Cavazos, JEB Moss ACM SIGPLAN Notices 39 (6), 183-194, 2004 | 113 | 2004 |
Fast compiler optimisation evaluation using code-feature based performance prediction C Dubach, J Cavazos, B Franke, G Fursin, MFP O'Boyle, O Temam Proceedings of the 4th international conference on Computing frontiers, 131-142, 2007 | 111 | 2007 |
Automatic performance model construction for the fast software exploration of new hardware designs J Cavazos, C Dubach, F Agakov, E Bonilla, MFP O'Boyle, G Fursin, ... Proceedings of the 2006 international conference on Compilers, architecture …, 2006 | 93 | 2006 |
A survey on compiler autotuning using machine learning AH Ashouri, W Killian, J Cavazos, G Palermo, C Silvano ACM Computing Surveys (CSUR) 51 (5), 1-42, 2018 | 86 | 2018 |
Using predictivemodeling for cross-program design space exploration in multicore systems S Khan, P Xekalakis, J Cavazos, M Cintra 16th International Conference on Parallel Architecture and Compilation …, 2007 | 80 | 2007 |
Automatic tuning of inlining heuristics J Cavazos, MFP O'Boyle SC'05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, 14-14, 2005 | 80 | 2005 |
Using graph-based program characterization for predictive modeling E Park, J Cavazos, MA Alvarez Proceedings of the Tenth International Symposium on Code Generation and …, 2012 | 79 | 2012 |
Midatasets: Creating the conditions for a more realistic evaluation of iterative optimization G Fursin, J Cavazos, M O’Boyle, O Temam International conference on high-performance embedded architectures and …, 2007 | 75 | 2007 |
An evaluation of different modeling techniques for iterative compilation E Park, S Kulkarni, J Cavazos Proceedings of the 14th international conference on Compilers, architectures …, 2011 | 69 | 2011 |
Software automatic tuning: from concepts to state-of-the-art results K Naono, K Teranishi, J Cavazos, R Suda Springer Science & Business Media, 2010 | 66 | 2010 |
Learning to schedule straight-line code JEB Moss, PE Utgoff, J Cavazos, D Precup, D Stefanovic, C Brodley, ... NIPS 97, 929-935, 1997 | 64 | 1997 |
MPI-aware compiler optimizations for improving communication-computation overlap A Danalis, L Pollock, M Swany, J Cavazos Proceedings of the 23rd international conference on Supercomputing, 316-325, 2009 | 59 | 2009 |
Intelligent selection of application-specific garbage collectors J Singer, G Brown, I Watson, J Cavazos Proceedings of the 6th international symposium on Memory management, 91-102, 2007 | 59 | 2007 |