A wearable sensor system for lameness detection in dairy cattle J Haladjian, J Haug, S Nüske, B Bruegge Multimodal Technologies and Interaction 2 (2), 27, 2018 | 43 | 2018 |
Deep neural networks and tabular data: A survey V Borisov, T Leemann, K Seßler, J Haug, M Pawelczyk, G Kasneci arXiv preprint arXiv:2110.01889, 2021 | 38 | 2021 |
CancelOut: A Layer for Feature Selection in Deep Neural Networks V Borisov, J Haug, G Kasneci International conference on artificial neural networks, 72-83, 2019 | 28 | 2019 |
On baselines for local feature attributions J Haug, S Zürn, P El-Jiz, G Kasneci arXiv preprint arXiv:2101.00905, 2021 | 10 | 2021 |
Learning parameter distributions to detect concept drift in data streams J Haug, G Kasneci 2020 25th International Conference on Pattern Recognition (ICPR), 9452-9459, 2021 | 9 | 2021 |
Leveraging model inherent variable importance for stable online feature selection J Haug, M Pawelczyk, K Broelemann, G Kasneci Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020 | 8 | 2020 |
Towards user empowerment M Pawelczyk, J Haug, K Broelemann, G Kasneci | 4 | 2019 |
TüEyeQ, a rich IQ test performance data set with eye movement, educational and socio-demographic information E Kasneci, G Kasneci, T Appel, J Haug, F Wortha, M Tibus, U Trautwein, ... Scientific Data 8 (1), 1-14, 2021 | 3 | 2021 |
Dynamic Model Tree for Interpretable Data Stream Learning J Haug, K Broelemann, G Kasneci arXiv preprint arXiv:2203.16181, 2022 | 1 | 2022 |
Standardized Evaluation of Machine Learning Methods for Evolving Data Streams J Haug, E Tramountani, G Kasneci arXiv preprint arXiv:2204.13625, 2022 | | 2022 |