Follow
Charles Guille-Escuret
Charles Guille-Escuret
PhD Student, Mila, UdeM
Verified email at umontreal.ca
Title
Cited by
Cited by
Year
A study of condition numbers for first-order optimization
C Guille-Escuret, M Girotti, B Goujaud, I Mitliagkas
International Conference on Artificial Intelligence and Statistics, 1261-1269, 2021
202021
Gradient descent is optimal under lower restricted secant inequality and upper error bound
C Guille-Escuret, A Ibrahim, B Goujaud, I Mitliagkas
Advances in Neural Information Processing Systems 36, 24893-24904, 2022
172022
Towards out-of-distribution adversarial robustness
A Ibrahim, C Guille-Escuret, I Mitliagkas, I Rish, D Krueger, P Bashivan
arXiv preprint arXiv:2210.03150, 2022
72022
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths
C Guille-Escuret, H Naganuma, K Fatras, I Mitliagkas
ICML 2024, 2023
62023
CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning
C Guille-Escuret, P Rodriguez, D Vazquez, I Mitliagkas, J Monteiro
Advances in Neural Information Processing Systems 37, 2023
32023
From Conformal Predictions to Confidence Regions
C Guille-Escuret, E Ndiaye
arXiv preprint arXiv:2405.18601, 2024
22024
Prediction of lightning currents on fastening assemblies of an aircraft fuel tank with machine learning methods
P Monferran, C Guille-Escuret, C Guiffaut, A Reineix
IEEE Transactions on Electromagnetic Compatibility 65 (3), 812-822, 2023
22023
Understanding Adam Requires Better Rotation Dependent Assumptions
L Maes, TH Zhang, A Jolicoeur-Martineau, I Mitliagkas, D Scieur, ...
arXiv preprint arXiv:2410.19964, 2024
12024
Finite Sample Confidence Regions for Linear Regression Parameters Using Arbitrary Predictors
C Guille-Escuret, E Ndiaye
arXiv preprint arXiv:2401.15254, 2024
12024
InsectUp: Crowdsourcing Insect Observations to Assess Demographic Shifts and Improve Classification
L Boussioux, T Giro-Larraz, C Guille-Escuret, M Cherti, B Kégl
ICML 2019 Workshop on AI for Social Good, 2019
12019
Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection
C Guille-Escuret, PA Noël, I Mitliagkas, D Vazquez, J Monteiro
Advances in Neural Information Processing Systems 37, 130953-130976, 2024
2024
Contrastive Self-supervision Defines General-Purpose Similarity Functions
C Guille-Escuret, P Rodríguez, D Vázquez, I Mitliagkas, J Monteiro
NeurIPS 2022 Self Supervised Learning Workshop, 2022
2022
Mitigating Forgetting in Continually Pretraining MoE-LLMs by Adding and Chilling Experts
R Li, C Guille-Escuret, D Kocetkov, J Lamy-Poirier, L Kumar, M Tian, ...
Understanding Adam Requires Better Rotation Dependent Assumptions
TH Zhang, L Maes, A Jolicoeur-Martineau, I Mitliagkas, D Scieur, ...
OPT 2024: Optimization for Machine Learning, 0
The system can't perform the operation now. Try again later.
Articles 1–14