Подписаться
David Wipf
David Wipf
Principal Research Scientist, Amazon Web Services
Подтвержден адрес электронной почты в домене amazon.com - Главная страница
Название
Процитировано
Процитировано
Год
Sparse Bayesian learning for basis selection
DP Wipf, BD Rao
IEEE Transactions on Signal processing 52 (8), 2153-2164, 2004
16452004
An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
DP Wipf, BD Rao
IEEE Transactions on Signal Processing 55 (7), 3704-3716, 2007
9722007
Iterative ReweightedandMethods for Finding Sparse Solutions
D Wipf, S Nagarajan
IEEE Journal of Selected Topics in Signal Processing 4 (2), 317-329, 2010
5922010
A new view of automatic relevance determination
D Wipf, S Nagarajan
Advances in neural information processing systems 20, 2007
4512007
Diagnosing and enhancing VAE models
B Dai, D Wipf
arXiv preprint arXiv:1903.05789, 2019
4472019
A unified Bayesian framework for MEG/EEG source imaging
D Wipf, S Nagarajan
NeuroImage 44 (3), 947-966, 2009
4112009
Lane change intent analysis using robust operators and sparse bayesian learning
JC McCall, DP Wipf, MM Trivedi, BD Rao
IEEE Transactions on Intelligent Transportation Systems 8 (3), 431-440, 2007
3792007
A generic deep architecture for single image reflection removal and image smoothing
Q Fan, J Yang, G Hua, B Chen, D Wipf
Proceedings of the IEEE International Conference on Computer Vision, 3238-3247, 2017
3502017
Latent variable Bayesian models for promoting sparsity
DP Wipf, BD Rao, S Nagarajan
IEEE Transactions on Information Theory 57 (9), 6236-6255, 2011
3342011
A practical transfer learning algorithm for face verification
X Cao, D Wipf, F Wen, G Duan, J Sun
Proceedings of the IEEE international conference on computer vision, 3208-3215, 2013
2542013
Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
DP Wipf, JP Owen, HT Attias, K Sekihara, SS Nagarajan
NeuroImage 49 (1), 641-655, 2010
2492010
Variational EM algorithms for non-Gaussian latent variable models
J Palmer, K Kreutz-Delgado, B Rao, D Wipf
Advances in neural information processing systems 18, 2005
2402005
From canonical correlation analysis to self-supervised graph neural networks
H Zhang, Q Wu, J Yan, D Wipf, PS Yu
Advances in Neural Information Processing Systems 34, 76-89, 2021
2122021
Unsupervised extraction of video highlights via robust recurrent auto-encoders
H Yang, B Wang, S Lin, D Wipf, M Guo, B Guo
Proceedings of the IEEE international conference on computer vision, 4633-4641, 2015
2062015
Multi-image blind deblurring using a coupled adaptive sparse prior
H Zhang, D Wipf, Y Zhang
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2013
2002013
Robust photometric stereo using sparse regression
S Ikehata, D Wipf, Y Matsushita, K Aizawa
2012 IEEE Conference on Computer Vision and Pattern Recognition, 318-325, 2012
1922012
Compressing neural networks using the variational information bottleneck
B Dai, C Zhu, B Guo, D Wipf
International Conference on Machine Learning, 1135-1144, 2018
1892018
Maximal sparsity with deep networks?
B Xin, Y Wang, W Gao, B Wang, D Wipf
Advances in Neural Information Processing Systems, 4340-4348, 2016
1872016
Single image reflection removal exploiting misaligned training data and network enhancements
K Wei, J Yang, Y Fu, D Wipf, H Huang
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1812019
Handling distribution shifts on graphs: An invariance perspective
Q Wu, H Zhang, J Yan, D Wipf
International Conference on Learning Representations, 2022
1732022
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20