Подписаться
Dongxian Wu
Dongxian Wu
Bytedance
Подтвержден адрес электронной почты в домене bytedance.com
Название
Процитировано
Процитировано
Год
Adversarial Weight Perturbation Helps Robust Generalization
D Wu, ST Xia, Y Wang
Conference on Neural Information Processing Systems (NeurIPS 2020), 2020
7202020
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with Resnets
D Wu, Y Wang, ST Xia, J Bailey, X Ma
International Conference on Learning Representations (ICLR 2020), 2020
3512020
Adversarial Neuron Pruning Purifies Backdoored Deep Models
D Wu, Y Wang
Conference on Neural Information Processing Systems (NeurIPS 2021), 2021
2382021
Targeted Attack for Deep Hashing based Retrieval
J Bai, B Chen, Y Li, D Wu, W Guo, S Xia, E Yang
European Conference on Computer Vision (ECCV 2020), 2020
892020
When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture
Y Mo, D Wu, Y Wang, Y Guo, Y Wang
Conference on Neural Information Processing Systems (NeurIPS 2022), 2022
452022
Not all samples are born equal: Towards effective clean-label backdoor attacks
Y Gao, Y Li, L Zhu, D Wu, Y Jiang, ST Xia
Pattern Recognition 139, 109512, 2023
342023
Dipdefend: Deep image prior driven defense against adversarial examples
T Dai, Y Feng, D Wu, B Chen, J Lu, Y Jiang, ST Xia
Proceedings of the 28th ACM International Conference on Multimedia, 1404-1412, 2020
232020
On the effectiveness of adversarial training against backdoor attacks
Y Gao, D Wu, J Zhang, G Gan, ST Xia, G Niu, M Sugiyama
IEEE Transactions on Neural Networks and Learning Systems, 2023
162023
Towards Robust Model Watermark via Reducing Parametric Vulnerability
G Gan, Y Li, D Wu, ST Xia
International Conference on Computer Vision (ICCV 2023), 2023
72023
Backdoor attack on hash-based image retrieval via clean-label data poisoning
K Gao, J Bai, B Chen, D Wu, ST Xia
arXiv preprint arXiv:2109.08868, 2021
62021
Universal adversarial head: Practical protection against video data leakage
J Bai, B Chen, D Wu, C Zhang, ST Xia
ICML 2021 Workshop on Adversarial Machine Learning, 2021
52021
Matrix Smoothing: A Regularization For Dnn With Transition Matrix Under Noisy Labels
X Lv, D Wu, ST Xia
2020 IEEE International Conference on Multimedia and Expo (ICME 2020), 1-6, 2020
32020
Temporal Calibrated Regularization for Robust Noisy Label Learning
D Wu, Y Wang, Z Zheng, S Xia
International Joint Conference on Neural Networks (IJCNN 2020), 2020
22020
Rethinking the Necessity of Labels in Backdoor Removal
Z Xiong, D Wu, Y Wang, Y Wang
ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning, 2023
12023
Does Adversarial Robustness Really Imply Backdoor Vulnerability?
Y Gao, D Wu, J Zhang, ST Xia, G Niu, M Sugiyama
12021
Towards Reliable Backdoor Attacks on Vision Transformers
Y Mo, D Wu, Y Wang, Y Guo, Y Wang
Do We Really Need Labels for Backdoor Defense?
Z Xiong, D Wu, Y Wang, Y Wang
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–17