Follow
Simon Bernard
Simon Bernard
Associate Professor (MCF), LITIS lab, Université Rouen Normandie, France
Verified email at univ-rouen.fr - Homepage
Title
Cited by
Cited by
Year
Influence of hyperparameters on random forest accuracy
S Bernard, L Heutte, S Adam
Multiple Classifier Systems: 8th International Workshop, MCS 2009, Reykjavik …, 2009
2282009
One class random forests
C Désir, S Bernard, C Petitjean, L Heutte
Pattern Recognition 46 (12), 3490-3506, 2013
2002013
Dynamic random forests
S Bernard, S Adam, L Heutte
Pattern Recognition Letters 33 (12), 1580-1586, 2012
1662012
On the selection of decision trees in random forests
S Bernard, L Heutte, S Adam
2009 International joint conference on neural networks, 302-307, 2009
1572009
Using random forests for handwritten digit recognition
S Bernard, S Adam, L Heutte
Ninth international conference on document analysis and recognition (ICDAR …, 2007
1352007
Random forest dissimilarity based multi-view learning for radiomics application
H Cao, S Bernard, R Sabourin, L Heutte
Pattern Recognition 88, 185-197, 2019
772019
Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images
H Cao, S Bernard, L Heutte, R Sabourin
Image Analysis and Recognition: 15th International Conference, ICIAR 2018 …, 2018
742018
Forest-RK: A new random forest induction method
S Bernard, L Heutte, S Adam
Advanced Intelligent Computing Theories and Applications. With Aspects of …, 2008
702008
The multiclass ROC front method for cost-sensitive classification
S Bernard, C Chatelain, S Adam, R Sabourin
Pattern Recognition 52, 46-60, 2016
402016
Mapping fragmented agricultural systems in the Sudano-Sahelian environments of Africa using random forest and ensemble metrics of coarse resolution MODIS imagery
E Vintrou, M Soumaré, S Bernard, A Bégué, C Baron, D Lo Seen
Photogrammetric Engineering & Remote Sensing 78 (8), 839-848, 2012
332012
A random forest based approach for one class classification in medical imaging
C Désir, S Bernard, C Petitjean, L Heutte
Machine Learning in Medical Imaging: Third International Workshop, MLMI 2012 …, 2012
332012
A study of strength and correlation in random forests
S Bernard, L Heutte, S Adam
Advanced Intelligent Computing Theories and Applications: 6th International …, 2010
312010
Towards a better understanding of random forests through the study of strength and correlation
S Bernard, L Heutte, S Adam
Emerging Intelligent Computing Technology and Applications. With Aspects of …, 2009
202009
A new random forest method for one-class classification
C Désir, S Bernard, C Petitjean, L Heutte
Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR …, 2012
152012
Forêts aléatoires: de l'analyse des mécanismes de fonctionnement à la construction dynamique
S Bernard
Université de Rouen, 2009
15*2009
A novel random forest dissimilarity measure for multi-view learning
H Cao, S Bernard, R Sabourin, L Heutte
2020 25th International Conference on Pattern Recognition (ICPR), 1344-1351, 2021
142021
Dissimilarity-based representation for radiomics applications
H Cao, S Bernard, L Heutte, R Sabourin
First International Conference on Pattern Recognition and Artificial …, 2018
122018
Dynamic voting in multi-view learning for radiomics applications
H Cao, S Bernard, L Heutte, R Sabourin
Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR …, 2018
82018
ROC-based cost-sensitive classification with a reject option
C Dubos, S Bernard, S Adam, R Sabourin
2016 23rd international conference on pattern recognition (ICPR), 3320-3325, 2016
52016
Random forest kernel for high-dimension low sample size classification
LP Cavalheiro, S Bernard, JP Barddal, L Heutte
Statistics and Computing 34 (1), 9, 2024
42024
The system can't perform the operation now. Try again later.
Articles 1–20