Pytorch: An imperative style, high-performance deep learning library A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... Advances in neural information processing systems 32, 2019 | 50475 | 2019 |
Automatic differentiation in pytorch A Paszke, S Gross, S Chintala, G Chanan, E Yang, Z DeVito, Z Lin, ... 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017 | 14434 | 2017 |
Advances in neural information processing systems 32 A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... Curran Associates, Inc, 8024-8035, 2019 | 1576 | 2019 |
Automatic differentiation in pytorch.(2017) A Paszke, S Gross, S Chintala, G Chanan, E Yang, Z DeVito, Z Lin, ... | 763 | 2017 |
Learning disentangled representations with semi-supervised deep generative models B Paige, JW Van De Meent, A Desmaison, N Goodman, P Kohli, F Wood, ... Advances in neural information processing systems 30, 2017 | 414 | 2017 |
Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph compilation J Ansel, E Yang, H He, N Gimelshein, A Jain, M Voznesensky, B Bao, ... Proceedings of the 29th ACM International Conference on Architectural …, 2024 | 267 | 2024 |
Pytorch: An imperative style, high-performance deep learning library, 2019 A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... arXiv preprint arXiv:1912.01703 10, 1912 | 251 | 1912 |
Pytorch fsdp: experiences on scaling fully sharded data parallel Y Zhao, A Gu, R Varma, L Luo, CC Huang, M Xu, L Wright, H Shojanazeri, ... arXiv preprint arXiv:2304.11277, 2023 | 202 | 2023 |
Playing doom with slam-augmented deep reinforcement learning S Bhatti, A Desmaison, O Miksik, N Nardelli, N Siddharth, PHS Torr arXiv preprint arXiv:1612.00380, 2016 | 99 | 2016 |
Lagrangian decomposition for neural network verification R Bunel, A De Palma, A Desmaison, K Dvijotham, P Kohli, P Torr, ... Conference on Uncertainty in Artificial Intelligence, 370-379, 2020 | 64 | 2020 |
Improved branch and bound for neural network verification via lagrangian decomposition A De Palma, R Bunel, A Desmaison, K Dvijotham, P Kohli, PHS Torr, ... arXiv preprint arXiv:2104.06718, 2021 | 61 | 2021 |
Advances in Neural Information Processing Systems 32 ed H A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... Wallach et al 8024, 2019 | 57 | 2019 |
Adaptive neural compilation RR Bunel, A Desmaison, PK Mudigonda, P Kohli, P Torr Advances in Neural Information Processing Systems 29, 2016 | 57 | 2016 |
Andreas Kö pf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An … A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... Advances in neural information processing systems 32, 8-14, 2019 | 54 | 2019 |
Learning to superoptimize programs R Bunel, A Desmaison, MP Kumar, PHS Torr, P Kohli International Conference on Learning Representations (ICLR), 2017 | 42 | 2017 |
PyTorch: an imperative style, high-performance deep learning library, December 2019 A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... URL http://arxiv. org/abs/1912.01703, 1912 | 40 | 1912 |
Efficient continuous relaxations for dense CRF A Desmaison, R Bunel, P Kohli, PHS Torr, MP Kumar Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016 | 38 | 2016 |
PyTorch: An imperative style, high-performance deep learning library.(NeurIPS)(2019) A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... | 27 | 1912 |
Efficient linear programming for dense CRFs T Ajanthan, A Desmaison, R Bunel, M Salzmann, PHS Torr, ... Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 21 | 2017 |
PyTorch: An imperative style, high-performance deep learning library. arXiv [cs. LG] A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... arXiv preprint arXiv:1912.01703, 2019 | 20 | 2019 |