Brooks' theorem and beyond DW Cranston, L Rabern
Journal of Graph Theory 80 (3), 199-225, 2015
49 2015 Dangerous reference graphs and semantic paradoxes L Rabern, B Rabern, M Macauley
Journal of Philosophical Logic 42 (5), 727-765, 2013
47 2013 A note on Reed's conjecture L Rabern
SIAM Journal on Discrete Mathematics 22 (2), 820-827, 2008
45 2008 Graphs with chromatic number close to maximum degree AV Kostochka, L Rabern, M Stiebitz
Discrete Mathematics 312 (6), 1273-1281, 2012
37 2012 Coloring Claw-Free Graphs with Colors DW Cranston, L Rabern
SIAM Journal on Discrete Mathematics 27 (1), 534-549, 2013
36 2013 On hitting all maximum cliques with an independent set L Rabern
Journal of Graph Theory 66 (1), 32-37, 2011
36 2011 A simple solution to the hardest logic puzzle ever B Rabern, L Rabern
Analysis 68 (2), 105-112, 2008
26 2008 Coloring (P 5, gem) (P_5,gem)‐free graphs with Δ− 1 Δ-1 colors DW Cranston, H Lafayette, L Rabern
Journal of Graph Theory 101 (4), 633-642, 2022
18 2022 Improved lower bounds on the number of edges in list critical and online list critical graphs H Kierstead, L Rabern
arXiv preprint arXiv:1406.7355, 2014
18 * 2014 Painting Squares in Shades DW Cranston, L Rabern
arXiv preprint arXiv:1311.1251, 2013
17 2013 Coloring a graph with Δ− 1 colors: Conjectures equivalent to the Borodin–Kostochka conjecture that appear weaker DW Cranston, L Rabern
European Journal of Combinatorics 44, 23-42, 2015
15 2015 Planar graphs are 9/2-colorable DW Cranston, L Rabern
Journal of Combinatorial Theory, Series B 133, 32-45, 2018
14 2018 Δ-Critical graphs with small high vertex cliques L Rabern
Journal of Combinatorial Theory, Series B 102 (1), 126-130, 2012
14 2012 Graphs with Have Big Cliques DW Cranston, L Rabern
SIAM Journal on Discrete Mathematics 29 (4), 1792-1814, 2015
13 2015 A different short proof of Brooks' theorem L Rabern
arXiv preprint arXiv:1205.3253, 2012
13 2012 On graph associations L Rabern
SIAM Journal on Discrete Mathematics 20 (2), 529-535, 2006
12 2006 A strengthening of Brooks' theorem for line graphs L Rabern
the electronic journal of combinatorics, P145-P145, 2011
11 2011 The fractional chromatic number of the plane DW Cranston, L Rabern
Combinatorica 37, 837-861, 2017
10 2017 Planar graphs have independence ratio at least 3/13 DW Cranston, L Rabern
arXiv preprint arXiv:1609.06010, 2016
10 2016 A computerized system for graph theory, illustrated by partial proofs for graph-coloring problems D Gernet, L Rabern
Graph Theory Notes of New York LV, 14-24, 2008
10 2008