Structured bayesian pruning via log-normal multiplicative noise K Neklyudov, D Molchanov, A Ashukha, DP Vetrov Advances in Neural Information Processing Systems 30, 2017 | 161 | 2017 |
Performance of machine learning algorithms in predicting game outcome from drafts in dota 2 A Semenov, P Romov, S Korolev, D Yashkov, K Neklyudov International Conference on Analysis of Images, Social Networks and Texts, 26-37, 2016 | 55 | 2016 |
Uncertainty estimation via stochastic batch normalization A Atanov, A Ashukha, D Molchanov, K Neklyudov, D Vetrov arXiv preprint arXiv:1802.04893, 2018 | 47 | 2018 |
Involutive mcmc: a unifying framework K Neklyudov, M Welling, E Egorov, D Vetrov International Conference on Machine Learning, 7273-7282, 2020 | 19 | 2020 |
Variance networks: When expectation does not meet your expectations K Neklyudov, D Molchanov, A Ashukha, D Vetrov arXiv preprint arXiv:1803.03764, 2018 | 19 | 2018 |
Metropolis-Hastings view on variational inference and adversarial training K Neklyudov, E Egorov, P Shvechikov, D Vetrov arXiv preprint arXiv:1810.07151, 2018 | 13 | 2018 |
Applications of Machine Learning in Dota 2: Literature Review and Practical Knowledge Sharing. AM Semenov, P Romov, K Neklyudov, D Yashkov, D Kireev MLSA@ PKDD/ECML, 2016 | 11 | 2016 |
Orbital mcmc K Neklyudov, M Welling International Conference on Artificial Intelligence and Statistics, 5790-5814, 2022 | 5 | 2022 |
The Implicit Metropolis-Hastings Algorithm K Neklyudov, E Egorov, D Vetrov Advances in Neural Information Processing Systems, 2019, 2019 | 5 | 2019 |
Maxentropy pursuit variational inference E Egorov, K Neklydov, R Kostoev, E Burnaev International Symposium on Neural Networks, 409-417, 2019 | 3 | 2019 |
Deterministic gibbs sampling via ordinary differential equations K Neklyudov, R Bondesan, M Welling arXiv preprint arXiv:2106.10188, 2021 | 1 | 2021 |
Particle Dynamics for Learning EBMs K Neklyudov, P Jaini, M Welling arXiv preprint arXiv:2111.13772, 2021 | | 2021 |