Gregory Belenky (Belenkii)
Gregory Belenky (Belenkii)
Distinguished Professor SUNY at Stony Brook
Подтвержден адрес электронной почты в домене stonybrook.edu
2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers
DZ Garbuzov, H Lee, V Khalfin, R Martinelli, JC Connolly, GL Belenky
IEEE Photonics Technology Letters 11 (7), 794-796, 1999
Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures
D Donetsky, SP Svensson, LE Vorobjev, G Belenky
Applied Physics Letters 95 (21), 212104, 2009
Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials
D Donetsky, G Belenky, S Svensson, S Suchalkin
Applied Physics Letters 97 (5), 052108, 2010
Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization
SP Svensson, D Donetsky, D Wang, H Hier, FJ Crowne, G Belenky
Journal of Crystal Growth 334 (1), 103-107, 2011
Quaternary InGaAsSb thermophotovoltaic diodes
MW Dashiell, JF Beausang, H Ehsani, GJ Nichols, DM Depoy, ...
IEEE Transactions on Electron Devices 53 (12), 2879-2891, 2006
Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves
JG Kim, L Shterengas, RU Martinelli, GL Belenky, DZ Garbuzov, WK Chan
Applied Physics Letters 81 (17), 3146-3148, 2002
Continuous wave operation of diode lasers at at
L Shterengas, G Belenky, T Hosoda, G Kipshidze, S Suchalkin
Applied Physics Letters 93 (1), 011103, 2008
Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ> 2.5 µm
L Shterengas, GL Belenky, JG Kim, RU Martinelli
Semiconductor science and technology 19 (5), 655, 2004
Type-I diode lasers for spectral region above 3 μm
G Belenky, L Shterengas, G Kipshidze, T Hosoda
IEEE Journal of Selected Topics in Quantum Electronics 17 (5), 1426-1434, 2011
High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In (Al) GaAsSb/GaSb diode lasers
JG Kim, L Shterengas, RU Martinelli, GL Belenky
Applied Physics Letters 83 (10), 1926-1928, 2003
High power heavily strained type-I quantum well GaSb-based diode lasers with more than of continuous wave output power and a maximum power …
L Shterengas, G Belenky, MV Kisin, D Donetsky
Applied physics letters 90 (1), 011119, 2007
Band gap of InAs 1− x Sb x with native lattice constant
SP Svensson, WL Sarney, H Hier, Y Lin, D Wang, D Donetsky, ...
Physical Review B 86 (24), 245205, 2012
Diode lasers emitting near 3.44 [mu] m in continuous-wave regime at 300K
T Hosoda, G Kipshidze, L Shterengas, G Belenky
Electronics letters 46 (21), 1, 2010
Novel design of AlGaInAs-InP lasers operating at 1.3/spl mu/m
RF Kazarinov, GL Belenky
IEEE journal of quantum electronics 31 (3), 423-426, 1995
Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials
I Vurgaftman, G Belenky, Y Lin, D Donetsky, L Shterengas, G Kipshidze, ...
Applied Physics Letters 108 (22), 222101, 2016
Properties of unrelaxed InAs1−XSbX alloys grown on compositionally graded buffers
G Belenky, D Donetsky, G Kipshidze, D Wang, L Shterengas, WL Sarney, ...
Applied physics letters 99 (14), 141116, 2011
Continuous-wave room temperature operated type I GaSb-based lasers with quinternary AlInGaAsSb barriers
T Hosoda, G Belenky, L Shterengas, G Kipshidze, MV Kisin
Applied Physics Letters 92 (9), 091106, 2008
Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time-resolved photoluminescence
S Anikeev, D Donetsky, G Belenky, S Luryi, CA Wang, JM Borrego, ...
Applied physics letters 83 (16), 3317-3319, 2003
Type-I GaSb-Based Laser Diodes Operating in 3.1- to 3.3-m Wavelength Range
T Hosoda, G Kipshidze, G Tsvid, L Shterengas, G Belenky
IEEE Photonics Technology Letters 22 (10), 718-720, 2010
Room temperature operated type-I GaSb-based diode lasers with continuous-wave output power
L Shterengas, G Belenky, G Kipshidze, T Hosoda
Applied Physics Letters 92 (17), 171111, 2008
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20