Follow
Gabriel Dulac-Arnold
Gabriel Dulac-Arnold
Google Research
Verified email at blacksheep.ai
Title
Cited by
Cited by
Year
Learning from demonstrations for real world reinforcement learning
T Hester, M Vecerik, O Pietquin, M Lanctot, T Schaul, B Piot, A Sendonaris, ...
928*2017
Challenges of real-world reinforcement learning: definitions, benchmarks and analysis
G Dulac-Arnold, N Levine, DJ Mankowitz, J Li, C Paduraru, S Gowal, ...
Machine Learning 110 (9), 2419-2468, 2021
525*2021
Deep reinforcement learning in large discrete action spaces
G Dulac-Arnold, R Evans, H van Hasselt, P Sunehag, T Lillicrap, J Hunt, ...
arXiv preprint arXiv:1512.07679, 2015
4712015
The predictron: End-to-end learning and planning
D Silver, H Hasselt, M Hessel, T Schaul, A Guez, T Harley, ...
International Conference on Machine Learning, 3191-3199, 2017
2382017
Rl unplugged: A suite of benchmarks for offline reinforcement learning
C Gulcehre, Z Wang, A Novikov, T Paine, S Gˇmez, K Zolna, R Agarwal, ...
Advances in Neural Information Processing Systems 33, 7248-7259, 2020
78*2020
Model-based offline planning
A Argenson, G Dulac-Arnold
ICLR 2021, 2020
592020
Datum-wise classification: a sequential approach to sparsity
G Dulac-Arnold, L Denoyer, P Preux, P Gallinari
Joint European conference on machine learning and knowledge discovery iná…, 2011
482011
Deep reinforcement learning with attention for slate markov decision processes with high-dimensional states and actions
P Sunehag, R Evans, G Dulac-Arnold, Y Zwols, D Visentin, B Coppin
arXiv preprint arXiv:1512.01124, 2015
362015
Text classification: A sequential reading approach
G Dulac-Arnold, L Denoyer, P Gallinari
European Conference on Information Retrieval, 411-423, 2011
342011
Deep multi-class learning from label proportions
G Dulac-Arnold, N Zeghidour, M Cuturi, L Beyer, JP Vert
arXiv preprint arXiv:1905.12909, 2019
242019
Learning to run a power network challenge: a retrospective analysis
A Marot, B Donnot, G Dulac-Arnold, A Kelly, A O’Sullivan, J Viebahn, ...
NeurIPS 2020 Competition and Demonstration Track, 112-132, 2021
232021
Sequential approaches for learning datum-wise sparse representations
G Dulac-Arnold, L Denoyer, P Preux, P Gallinari
Machine learning 89 (1), 87-122, 2012
222012
Differentiable deep clustering with cluster size constraints
A Genevay, G Dulac-Arnold, JP Vert
arXiv preprint arXiv:1910.09036, 2019
212019
Fast reinforcement learning with large action sets using error-correcting output codes for mdp factorization
G Dulac-Arnold, L Denoyer, P Preux, P Gallinari
Joint European Conference on Machine Learning and Knowledge Discovery iná…, 2012
212012
Sequentially Generated Instance-Dependent Image Representations for Classification
M Cord, N Thome, L Denoyer, G Dulac-Arnold
ICLR, 2013
19*2013
AI-based mobile application to fight antibiotic resistance
M Pascucci, G Royer, J Adamek, MA Asmar, D Aristizabal, L Blanche, ...
Nature communications 12 (1), 1-10, 2021
112021
Learning dynamics models for model predictive agents
M Lutter, L Hasenclever, A Byravan, G Dulac-Arnold, P Trochim, N Heess, ...
arXiv preprint arXiv:2109.14311, 2021
72021
Challenges of real-world reinforcement learning
G Dulac-Arnold, D Mankowitz, T Hester
ICML Workshop on Real-Life RL, 2019
7*2019
Challenges of Real-World Reinforcement Learning: Definitions, Benchmarks & Analysis
C Paduraru, DJ Mankowitz, G Dulac-Arnold, J Li, N Levine, S Gowal, ...
62021
Residual reinforcement learning from demonstrations
M Alakuijala, G Dulac-Arnold, J Mairal, J Ponce, C Schmid
arXiv preprint arXiv:2106.08050, 2021
42021
The system can't perform the operation now. Try again later.
Articles 1–20