Follow
Thomas Opitz
Thomas Opitz
Researcher, French National Institute of Agronomic Research
Verified email at inra.fr - Homepage
Title
Cited by
Cited by
Year
Extremal t processes: Elliptical domain of attraction and a spectral representation
T Opitz
Journal of Multivariate Analysis 122, 409-413, 2013
1752013
Space-time landslide predictive modelling
L Lombardo, T Opitz, F Ardizzone, F Guzzetti, R Huser
Earth-science reviews 209, 103318, 2020
1442020
Efficient inference and simulation for elliptical Pareto processes
E Thibaud, T Opitz
Biometrika 102 (4), 855-870, 2015
1252015
Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures
R Huser, T Opitz, E Thibaud
Spatial Statistics 21, 166-186, 2017
1172017
INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
T Opitz, R Huser, H Bakka, H Rue
Extremes 21 (3), 441-462, 2018
1162018
Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster
L Lombardo, T Opitz, R Huser
Stochastic environmental research and risk assessment 32, 2179-2198, 2018
1072018
What patients can tell us: topic analysis for social media on breast cancer
MDT Nzali, S Bringay, C Lavergne, C Mollevi, T Opitz
JMIR medical informatics 5 (3), e7779, 2017
1032017
Modeling asymptotically independent spatial extremes based on Laplace random fields
T Opitz
Spatial Statistics 16, 1-18, 2016
722016
Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood
F Pimont, H Fargeon, T Opitz, J Ruffault, R Barbero, N Martin‐StPaul, ...
Ecological applications 31 (5), e02316, 2021
532021
Latent Gaussian modeling and INLA: A review with focus on space-time applications
T Opitz
Journal de la société française de statistique 158 (3), 62-85, 2017
482017
Spatiotemporal wildfire modeling through point processes with moderate and extreme marks
J Koh, F Pimont, JL Dupuy, T Opitz
The annals of applied statistics 17 (1), 560-582, 2023
452023
Point-process based Bayesian modeling of space–time structures of forest fire occurrences in Mediterranean France
T Opitz, F Bonneu, E Gabriel
Spatial Statistics 40, 100429, 2020
412020
Extremal dependence of random scale constructions
S Engelke, T Opitz, J Wadsworth
Extremes 22 (4), 623-666, 2019
412019
Max‐infinitely divisible models and inference for spatial extremes
R Huser, T Opitz, E Thibaud
Scandinavian Journal of Statistics 48 (1), 321-348, 2021
342021
Numerical recipes for landslide spatial prediction using R-INLA: a step-by-step tutorial
L Lombardo, T Opitz, R Huser
Spatial modeling in GIS and R for earth and environmental sciences, 55-83, 2019
342019
Hierarchical space-time modeling of asymptotically independent exceedances with an application to precipitation data
JN Bacro, C Gaetan, T Opitz, G Toulemonde
Journal of the American Statistical Association 115 (530), 555-569, 2020
332020
Spatio-temporal variation and dynamic scenario simulation of ecological risk in a typical artificial oasis in northwestern China
Q Song, B Hu, J Peng, H Bourennane, A Biswas, T Opitz, Z Shi
Journal of Cleaner Production 369, 133302, 2022
272022
Detecting and modeling multi-scale space-time structures: the case of wildfire occurrences
E Gabriel, T Opitz, F Bonneu
Journal de la Société Française de Statistique 158 (3), 86-105, 2017
252017
Spatial hierarchical modeling of threshold exceedances using rate mixtures
R Yadav, R Huser, T Opitz
Environmetrics 32 (3), e2662, 2021
242021
Modeling nonstationary temperature maxima based on extremal dependence changing with event magnitude
P Zhong, R Huser, T Opitz
The Annals of Applied Statistics 16 (1), 272-299, 2022
222022
The system can't perform the operation now. Try again later.
Articles 1–20