Cynthia Rudin
Cynthia Rudin
Professor of Computer Science, ECE, and Statistics, Duke University
Подтвержден адрес электронной почты в домене cs.duke.edu - Главная страница
Название
Процитировано
Процитировано
Год
Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model
B Letham, C Rudin, TH McCormick, D Madigan
The Annals of Applied Statistics 9 (3), 1350-1371, 2015
434*2015
Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
C Rudin
Nature Machine Intelligence 1 (5), 206-215, 2019
3412019
The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list
C Rudin
The Journal of Machine Learning Research 10, 2233-2271, 2009
219*2009
Machine learning for the New York City power grid
C Rudin, D Waltz, RN Anderson, A Boulanger, A Salleb-Aouissi, M Chow, ...
IEEE transactions on pattern analysis and machine intelligence 34 (2), 328-345, 2011
1992011
Margin-based ranking and an equivalence between AdaBoost and RankBoost
C Rudin, RE Schapire
The Journal of Machine Learning Research 10, 2193-2232, 2009
198*2009
Supersparse linear integer models for optimized medical scoring systems
B Ustun, C Rudin
Machine Learning 102 (3), 349-391, 2016
187*2016
Arabic morphological tagging, diacritization, and lemmatization using lexeme models and feature ranking
R Roth, O Rambow, N Habash, M Diab, C Rudin
Proceedings of ACL-08: HLT, short papers, 117-120, 2008
1702008
All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously.
A Fisher, C Rudin, F Dominici
Journal of Machine Learning Research 20 (177), 1-81, 2019
166*2019
Falling rule lists
F Wang, C Rudin
Artificial Intelligence and Statistics, 1013-1022, 2015
1522015
The bayesian case model: A generative approach for case-based reasoning and prototype classification
B Kim, C Rudin, JA Shah
Advances in neural information processing systems, 1952-1960, 2014
1502014
The dynamics of AdaBoost: Cyclic behavior and convergence of margins
C Rudin, I Daubechies, RE Schapire
Journal of Machine Learning Research 5 (Dec), 1557-1595, 2004
1342004
Interpretable classification models for recidivism prediction
J Zeng, B Ustun, C Rudin
arXiv preprint arXiv:1503.07810, 2015
1312015
A bayesian framework for learning rule sets for interpretable classification
T Wang, C Rudin, F Doshi-Velez, Y Liu, E Klampfl, P MacNeille
The Journal of Machine Learning Research 18 (1), 2357-2393, 2017
130*2017
The Big Data Newsvendor: Practical Insights from Machine Learning
C Rudin, GY Vahn
Operations Research, 2014
127*2014
Learning certifiably optimal rule lists for categorical data
E Angelino, N Larus-Stone, D Alabi, M Seltzer, C Rudin
The Journal of Machine Learning Research 18 (1), 8753-8830, 2017
1182017
Learning to detect patterns of crime
T Wang, C Rudin, D Wagner, R Sevieri
Joint European conference on machine learning and knowledge discovery in …, 2013
1122013
Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions
O Li, H Liu, C Chen, C Rudin
Thirty-second AAAI conference on artificial intelligence, 2018
942018
The World Health Organization adult attention-deficit/hyperactivity disorder self-report screening scale for DSM-5
B Ustun, LA Adler, C Rudin, SV Faraone, TJ Spencer, P Berglund, ...
Jama psychiatry 74 (5), 520-527, 2017
922017
Scalable Bayesian rule lists
H Yang, C Rudin, M Seltzer
ICML 2017, 2017
892017
Analysis of boosting algorithms using the smooth margin function
C Rudin, RE Schapire, I Daubechies
The Annals of Statistics 35 (6), 2723-2768, 2007
73*2007
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20