Follow
Ciprian Tudor
Ciprian Tudor
Unknown affiliation
Verified email at univ-paris1.fr
Title
Cited by
Cited by
Year
Gaussian limits for vector-valued multiple stochastic integrals
G Peccati, CA Tudor
Séminaire de Probabilités XXXVIII, 247-262, 2005
3102005
Stochastic evolution equations with fractional Brownian motion
S Tindel, CA Tudor, F Viens
Probability Theory and Related Fields 127, 186-204, 2003
2872003
Analysis of the Rosenblatt process
CA Tudor
ESAIM: Probability and statistics 12, 230-257, 2008
2362008
Statistical aspects of the fractional stochastic calculus
CA Tudor, FG Viens
2022007
On bifractional Brownian motion
F Russo, CA Tudor
Stochastic Processes and their applications 116 (5), 830-856, 2006
1992006
Analysis of variations for self-similar processes: a stochastic calculus approach
C Tudor
Springer Science & Business Media, 2013
1982013
Central and non-central limit theorems for weighted power variations of fractional Brownian motion
I Nourdin, D Nualart, CA Tudor
Annales de l'IHP Probabilités et statistiques 46 (4), 1055-1079, 2010
1542010
Sample path properties of bifractional Brownian motion
CA Tudor, Y Xiao
1152007
Variations and estimators for self-similarity parameters via Malliavin calculus
CA Tudor, FG Viens
1142009
Wiener integrals with respect to the Hermite process and a non-central limit theorem
M Maejima, CA Tudor
Stochastic analysis and applications 25 (5), 1043-1056, 2007
1142007
Wiener integrals, Malliavin calculus and covariance measure structure
I Kruk, F Russo, CA Tudor
Journal of Functional Analysis 249 (1), 92-142, 2007
952007
Tanaka formula for the fractional Brownian motion
L Coutin, D Nualart, CA Tudor
Stochastic processes and their applications 94 (2), 301-315, 2001
802001
On the distribution of the Rosenblatt process
M Maejima, CA Tudor
Statistics & probability letters 83 (6), 1490-1495, 2013
792013
Selfsimilar processes with stationary increments in the second Wiener chaos
M Maejima, CA Tudor
Probab. Math. Statist 32 (1), 167-186, 2012
712012
The stochastic heat equation with a fractional-colored noise: existence of the solution
R Balan, C Tudor
arXiv preprint math/0703088, 2007
682007
The stochastic wave equation with fractional noise: A random field approach
RM Balan, CA Tudor
Stochastic processes and their applications 120 (12), 2468-2494, 2010
672010
A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter
JM Bardet, CA Tudor
Stochastic Processes and their Applications 120 (12), 2331-2362, 2010
652010
Multidimensional bifractional Brownian motion: Itô and Tanaka formulas
C Tudor, K Es-Sebaiy
arXiv preprint math/0703087, 2007
582007
Stein’s method for invariant measures of diffusions via Malliavin calculus
S Kusuoka, CA Tudor
Stochastic Processes and their Applications 122 (4), 1627-1651, 2012
572012
Variations and Hurst index estimation for a Rosenblatt process using longer filters
A Chronopoulou, FG Viens, CA Tudor
562009
The system can't perform the operation now. Try again later.
Articles 1–20