Ambra Demontis
Ambra Demontis
Assistant Professor at University of Cagliari
Verified email at - Homepage
Cited by
Cited by
Towards poisoning of deep learning algorithms with back-gradient optimization
L Muñoz-González, B Biggio, A Demontis, A Paudice, V Wongrassamee, ...
Proceedings of the 10th ACM workshop on artificial intelligence and security …, 2017
Adversarial malware binaries: Evading deep learning for malware detection in executables
B Kolosnjaji, A Demontis, B Biggio, D Maiorca, G Giacinto, C Eckert, ...
2018 26th European signal processing conference (EUSIPCO), 533-537, 2018
Yes, machine learning can be more secure! a case study on android malware detection
A Demontis, M Melis, B Biggio, D Maiorca, D Arp, K Rieck, I Corona, ...
IEEE Transactions on Dependable and Secure Computing, 2017
Why do adversarial attacks transfer? explaining transferability of evasion and poisoning attacks
A Demontis, M Melis, M Pintor, M Jagielski, B Biggio, A Oprea, ...
28th USENIX security symposium (USENIX security 19), 321-338, 2019
Is deep learning safe for robot vision? adversarial examples against the icub humanoid
M Melis, A Demontis, B Biggio, G Brown, G Fumera, F Roli
Proceedings of the IEEE international conference on computer vision …, 2017
Secure kernel machines against evasion attacks
P Russu, A Demontis, B Biggio, G Fumera, F Roli
Proceedings of the 2016 ACM workshop on artificial intelligence and security …, 2016
On security and sparsity of linear classifiers for adversarial settings
A Demontis, P Russu, B Biggio, G Fumera, F Roli
Joint IAPR International Workshops on Statistical Techniques in Pattern …, 2016
Deep neural rejection against adversarial examples
A Sotgiu, A Demontis, M Melis, B Biggio, G Fumera, X Feng, F Roli
EURASIP Journal on Information Security 2020 (1), 1-10, 2020
secml: A python library for secure and explainable machine learning
M Melis, A Demontis, M Pintor, A Sotgiu, B Biggio
arXiv preprint arXiv:1912.10013, 2019
Adversarial detection of flash malware: Limitations and open issues
D Maiorca, A Demontis, B Biggio, F Roli, G Giacinto
Computers & Security 96, 101901, 2020
Do gradient-based explanations tell anything about adversarial robustness to android malware?
M Melis, M Scalas, A Demontis, D Maiorca, B Biggio, G Giacinto, F Roli
International Journal of Machine Learning and Cybernetics 13 (1), 217-232, 2022
Can domain knowledge alleviate adversarial attacks in multi-label classifiers?
S Melacci, G Ciravegna, A Sotgiu, A Demontis, B Biggio, M Gori, F Roli
Infinity-norm support vector machines against adversarial label contamination
A Demontis, B Biggio, G Fumera, G Giacinto, F Roli
1st Italian Conference on Cybersecurity, ITASEC 2017 1816, 106-115, 2017
The threat of offensive ai to organizations
Y Mirsky, A Demontis, J Kotak, R Shankar, D Gelei, L Yang, X Zhang, ...
arXiv preprint arXiv:2106.15764, 2021
Super-sparse regression for fast age estimation from faces at test time
A Demontis, B Biggio, G Fumera, F Roli
International Conference on Image Analysis and Processing, 551-562, 2015
Super-sparse learning in similarity spaces
A Demontis, M Melis, B Biggio, G Fumera, F Roli
IEEE Computational Intelligence Magazine 11 (4), 36-45, 2016
Indicators of attack failure: Debugging and improving optimization of adversarial examples
M Pintor, L Demetrio, A Sotgiu, G Manca, A Demontis, N Carlini, B Biggio, ...
arXiv preprint arXiv:2106.09947, 2021
Backdoor learning curves: Explaining backdoor poisoning beyond influence functions
AE Cinà, K Grosse, S Vascon, A Demontis, B Biggio, F Roli, M Pelillo
arXiv preprint arXiv:2106.07214, 2021
Energy-latency attacks via sponge poisoning
AE Cinà, A Demontis, B Biggio, F Roli, M Pelillo
arXiv preprint arXiv:2203.08147, 2022
ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches
M Pintor, D Angioni, A Sotgiu, L Demetrio, A Demontis, B Biggio, F Roli
arXiv preprint arXiv:2203.04412, 2022
The system can't perform the operation now. Try again later.
Articles 1–20