Statistical properties of simple types M Moczurad, J Tyszkiewicz, M Zaionc Mathematical Structures in Computer Science 10 (5), 575-594, 2000 | 62 | 2000 |
Asymptotically almost all\lambda-terms are strongly normalizing R David, K Grygiel, J Kozik, C Raffalli, G Theyssier, M Zaionc Logical Methods in Computer Science 9, 2013 | 53 | 2013 |
Classical and intuitionistic logic are asymptotically identical H Fournier, D Gardy, A Genitrini, M Zaionc Computer Science Logic: 21st International Workshop, CSL 2007, 16th Annual …, 2007 | 42 | 2007 |
Statistics of intuitionistic versus classical logics Z Kostrzycka, M Zaionc Studia Logica 76, 307-328, 2004 | 41 | 2004 |
On the Asymptotic Density of Tautologies in Logic of Implication and Negation. M Zaionc Reports Math. Log. 39, 67-87, 2005 | 37 | 2005 |
Word operation definable in the typed λ-calculus M Zaionc Theoretical computer science 52 (1-2), 1-14, 1987 | 34 | 1987 |
Intuitionistic vs. classical tautologies, quantitative comparison A Genitrini, J Kozik, M Zaionc Types for Proofs and Programs: International Conference, TYPES 2007 …, 2008 | 31 | 2008 |
A natural counting of lambda terms M Bendkowski, K Grygiel, P Lescanne, M Zaionc International Conference on Current Trends in Theory and Practice of …, 2016 | 26 | 2016 |
How big is BCI fragment of BCK logic K Grygiel, PM Idziak, M Zaionc Journal of Logic and Computation 23 (3), 673-691, 2013 | 23 | 2013 |
The set of unifiers in typed λ-calculus as regular expression M Zaionc International Conference on Rewriting Techniques and Applications, 430-440, 1985 | 22 | 1985 |
Combinatorics of -terms: a natural approach M Bendkowski, K Grygiel, P Lescanne, M Zaionc Journal of Logic and Computation 27 (8), 2611-2630, 2017 | 19 | 2017 |
Some properties of random lambda terms R David, C Raffalli, G Theyssier, K Grygiel, J Kozik, M Zaionc Logical Methods in Computer Science 9 (1), 2009 | 19 | 2009 |
Probability distribution for simple tautologies M Zaionc Theoretical Computer Science 355 (2), 243-260, 2006 | 19 | 2006 |
Mechanical procedure for proof construction via closed terms in typed λ calculus M Zaionc Journal of Automated Reasoning 4, 173-190, 1988 | 18 | 1988 |
λ-definability on free algebras M Zaionc Annals of Pure and Applied Logic 51 (3), 279-300, 1991 | 15 | 1991 |
Asymptotic densities in logic and type theory Z Kostrzycka, M Zaionc Studia Logica 88, 385-403, 2008 | 12 | 2008 |
The regular expression descriptions of unifier set in the typed λ-calculus M Zaionc Fundamenta Informaticae 10 (3), 309-322, 1987 | 11 | 1987 |
On the likelihood of normalization in combinatory logic M Bendkowski, K Grygiel, M Zaionc Journal of Logic and Computation 27 (7), 2251-2269, 2017 | 10 | 2017 |
Fixpoint technique for counting terms in typed lambda calculus M Zaionc Department of Computer Science, State University of New York at Buffalo, 1995 | 9* | 1995 |
A characterization of lambda definable tree operations M Zaionc Information and Computation 89 (1), 35-46, 1990 | 9 | 1990 |