Pushpak Pati
Pushpak Pati
Verified email at
Cited by
Cited by
Hierarchical Graph Representations in Digital Pathology
P Pati*, G Jaume*, A Foncubierta, F Feroce, AM Anniciello, ...
Medical Image Analysis, 2021
Quantifying Explainers of Graph Neural Networks in Computational Pathology
G Jaume*, P Pati*, B Bozorgtabar, A Foncubierta-Rodríguez, F Feroce, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification
P Pati*, G Jaume*, LA Fernandes, A Foncubierta, F Feroce, AM Anniciello, ...
MICCAI, Graphs in Biomedical Image Analysis Workshop, 2020
Bracs: A dataset for breast carcinoma subtyping in h&e histology images
N Brancati, AM Anniciello, P Pati, D Riccio, G Scognamiglio, G Jaume, ...
Database 2022, baac093, 2022
Multi-organ gland segmentation using deep learning
T Binder, EM Tantaoui, P Pati, R Catena, A Set-Aghayan, M Gabrani
Frontiers in Medicine, 2019
Towards Explainable Graph Representations in Digital Pathology
G Jaume*, P Pati*, A Foncubierta-Rodriguez, F Feroce, G Scognamiglio, ...
ICML, Computational Biology Workshop, 2020
HistoCartography: A Toolkit for Graph Analytics in Digital Pathology
G Jaume*, P Pati*, V Anklin, A Foncubierta, M Gabrani
MICCAI, Computational Pathology Workshop, 2021
Learning Whole-Slide Segmentation from Inexact and Incomplete Labels using Tissue Graphs
V Anklin*, P Pati*, G Jaume*, B Bozorgtabar, A Foncubierta-Rodríguez, ...
MICCAI, 2021
Tissue staining quality determination
NM Arar, M Gabrani, G Kaigala, A Kashyap, AF Khartchenko, P Pati
US Patent 10,706,535, 2020
Reducing annotation effort in digital pathology: A Co-Representation learning framework for classification tasks
P Pati, A Foncubierta-Rodríguez, O Goksel, M Gabrani
Medical image analysis 67, 101859, 2021
Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images
K Thandiackal*, B Chen*, P Pati, G Jaume, DFK Williamson, M Gabrani, ...
ECCV, 2022
Quantitative microimmunohistochemistry (qμIC): a method to grade immunostains in tumor tissues using saturation kinetics
A Kashyap*, A Fomitcheva Khartchenko*, P Pati, M Gabrani, P Schraml, ...
Nature Biomedical Engineering, 2019
A Fast and Scalable Pipeline for Stain Normalization of Whole-Slide Images in Histopathology
M Stanisavljevic, A Anghel, N Papandreou, S Andani, P Pati, ...
ECCV, BioImage Computing Workshop, 2018
NINEPINS: Nuclei instance segmentation with point annotations
TA Yen, HC Hsu, P Pati, M Gabrani, A Foncubierta-Rodríguez, PC Chung
arXiv preprint arXiv:2006.13556, 2020
Deep positive-unlabeled learning for region of interest localization in breast tissue images
P Pati, S Andani, M Pediaditis, MP Viana, JH Ruschoff, P Wild, M Gabrani
SPIE Medical Imaging 2018: Digital Pathology, 2018
High-Quality Immunohistochemical Stains through Computational Assay Parameter Optimization
P Pati*, N Murat Arar*, A Kashyap, A Fomitcheva Khartchenko, O Goksel, ...
IEEE Transactions on Biomedical Engineering, 2019
FPGA implementation of rule optimization for stand-alone tunable fuzzy logic controller using GA
BR Jammu, P Pati, SK Patra, KK Mahapatra
Complex & Intelligent Systems 2 (2), 83-98, 2016
Weakly Supervised Joint Whole-Slide Segmentation and Classification in Prostate Cancer
P Pati, G Jaume, Z Ayadi, K Thandiackal, B Bozorgtabar, M Gabrani, ...
Medical Image Analysis, 2023
Computational Immunohistochemistry: Recipes for Standardization of Immunostaining
NM Arar, P Pati, A Kashyap, AF Khartchenko, O Goksel, GV Kaigala, ...
MICCAI, 2017
Matching single cells across modalities with contrastive learning and optimal transport
F Gossi, P Pati, P Chouvardas, AL Martinelli, M Kruithof-de Julio, ...
Briefings in bioinformatics 24 (3), bbad130, 2023
The system can't perform the operation now. Try again later.
Articles 1–20