Подписаться
Drew A. Hudson
Drew A. Hudson
Подтвержден адрес электронной почты в домене cs.stanford.edu - Главная страница
Название
Процитировано
Процитировано
Год
On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
42652021
GQA: A new dataset for real-world visual reasoning and compositional question answering
DA Hudson, CD Manning
arXiv preprint arXiv:1902.09506, 2019
19312019
Holistic evaluation of language models
P Liang, R Bommasani, T Lee, D Tsipras, D Soylu, M Yasunaga, Y Zhang, ...
arXiv preprint arXiv:2211.09110, 2022
10842022
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530, 2024
671*2024
Compositional attention networks for machine reasoning
DA Hudson, CD Manning
arXiv preprint arXiv:1803.03067, 2018
6392018
Learning by abstraction: The neural state machine
D Hudson, CD Manning
Advances in neural information processing systems 32, 2019
3142019
Generative adversarial transformers
DA Hudson, L Zitnick
International conference on machine learning, 4487-4499, 2021
2172021
On the opportunities and risks of foundation models. arXiv
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
1122021
On the opportunities and risks of foundation models. arXiv 2021
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2023
952023
On the opportunities and risks of foundation models (arXiv: 2108.07258). arXiv
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
782022
& Liang, P.(2021). On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 0
71
On the opportunities and risks of foundation models (2021)
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2022
622022
Compositional transformers for scene generation
D Arad Hudson, L Zitnick
Advances in neural information processing systems 34, 9506-9520, 2021
502021
SLM: Learning a discourse language representation with sentence unshuffling
H Lee, DA Hudson, K Lee, CD Manning
arXiv preprint arXiv:2010.16249, 2020
452020
others (2021). On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258 24, 0
29
Soda: Bottleneck diffusion models for representation learning
DA Hudson, D Zoran, M Malinowski, AK Lampinen, A Jaegle, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
192024
Scaling instructable agents across many simulated worlds
MA Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ...
arXiv preprint arXiv:2404.10179, 2024
82024
Scaling instructable agents across many simulated worlds
M Abi Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ...
arXiv e-prints, arXiv: 2404.10179, 2024
52024
Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image Diffusion Models
Z Wu, Y Rubanova, R Kabra, DA Hudson, I Gilitschenski, Y Aytar, ...
arXiv preprint arXiv:2406.09292, 2024
22024
Moving Off-the-Grid: Scene-Grounded Video Representations
S van Steenkiste, D Zoran, Y Yang, Y Rubanova, R Kabra, C Doersch, ...
arXiv preprint arXiv:2411.05927, 2024
2024
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–20