Follow
Nicolas Durrande
Nicolas Durrande
Research Lead at Shift Lab
Verified email at shiftlab.ai - Homepage
Title
Cited by
Cited by
Year
Variational Fourier Features for Gaussian Processes.
J Hensman, N Durrande, A Solin
J. Mach. Learn. Res. 18 (1), 5537-5588, 2017
1902017
Additive covariance kernels for high-dimensional Gaussian process modeling
N Durrande, D Ginsbourger, O Roustant
Annales de la Faculté des sciences de Toulouse: Mathématiques 21 (3), 481-499, 2012
134*2012
ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis
N Durrande, D Ginsbourger, O Roustant, L Carraro
Journal of Multivariate Analysis 115, 57-67, 2013
922013
Finite-dimensional Gaussian approximation with linear inequality constraints
AF López-Lopera, F Bachoc, N Durrande, O Roustant
SIAM/ASA Journal on Uncertainty Quantification 6 (3), 1224-1255, 2018
732018
Nested Kriging predictions for datasets with a large number of observations
D Rullière, N Durrande, F Bachoc, C Chevalier
Statistics and Computing 28, 849-867, 2018
692018
Detecting periodicities with Gaussian processes
N Durrande, J Hensman, M Rattray, ND Lawrence
PeerJ Computer Science 2, e50, 2016
53*2016
Matérn Gaussian processes on graphs
V Borovitskiy, I Azangulov, A Terenin, P Mostowsky, M Deisenroth, ...
International Conference on Artificial Intelligence and Statistics, 2593-2601, 2021
432021
Sparse Gaussian processes with spherical harmonic features
V Dutordoir, N Durrande, J Hensman
International Conference on Machine Learning, 2793-2802, 2020
432020
Distance-based kriging relying on proxy simulations for inverse conditioning
D Ginsbourger, B Rosspopoff, G Pirot, N Durrande, P Renard
Advances in water resources 52, 275-291, 2013
422013
An analytic comparison of regularization methods for Gaussian Processes
H Mohammadi, RL Riche, N Durrande, E Touboul, X Bay
arXiv preprint arXiv:1602.00853, 2016
342016
Banded matrix operators for Gaussian Markov models in the automatic differentiation era
N Durrande, V Adam, L Bordeaux, S Eleftheriadis, J Hensman
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
332019
A tutorial on sparse Gaussian processes and variational inference
F Leibfried, V Dutordoir, ST John, N Durrande
arXiv preprint arXiv:2012.13962, 2020
282020
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
D Ginsbourger, O Roustant, N Durrande
Journal of statistical planning and inference 170, 117-128, 2016
242016
On ANOVA decompositions of kernels and Gaussian random field paths
D Ginsbourger, O Roustant, D Schuhmacher, N Durrande, N Lenz
Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April …, 2016
242016
Deep neural networks as point estimates for deep Gaussian processes
V Dutordoir, J Hensman, M van der Wilk, CH Ek, Z Ghahramani, ...
Advances in Neural Information Processing Systems 34, 9443-9455, 2021
202021
Bayesian quantile and expectile optimisation
V Picheny, H Moss, L Torossian, N Durrande
Uncertainty in Artificial Intelligence, 1623-1633, 2022
192022
Doubly sparse variational Gaussian processes
V Adam, S Eleftheriadis, A Artemev, N Durrande, J Hensman
International Conference on Artificial Intelligence and Statistics, 2874-2884, 2020
192020
Kernels and designs for modelling invariant functions: From group invariance to additivity
D Ginsbourger, N Durrande, O Roustant
mODa 10–Advances in Model-Oriented Design and Analysis: Proceedings of the …, 2013
172013
Etude de classes de noyaux adaptées à la simplification et à l’interprétation des modeles d’approximation. Une approche fonctionnelle et probabiliste.
N Durrande
Ph. D. thesis, Saint-Etienne, EMSE, 2011
172011
Gaussian process modulated Cox processes under linear inequality constraints
AF López-Lopera, ST John, N Durrande
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
162019
The system can't perform the operation now. Try again later.
Articles 1–20