Superintegrable Hamiltonian systems: geometry and perturbations F Fasso` Acta Applicandae Mathematica 87 (1-3), 93-121, 2005 | 120 | 2005 |
Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems F Fasso, M Guzzo, G Benettin Communications in mathematical physics 197, 347-360, 1998 | 95 | 1998 |
Nekhoroshev-stability of and in the spatial restricted three-body problem G Benettin, F Fassò, M Guzzo Regular and chaotic dynamics 3 (3), 56-72, 1998 | 91 | 1998 |
Lie series method for vector fields and Hamiltonian perturbation theory F Fassò Zeitschrift für angewandte Mathematik und Physik ZAMP 41 (6), 843-864, 1990 | 60 | 1990 |
Conservation of energy and momenta in nonholonomic systems with affine constraints F Fassò, N Sansonetto Regular and Chaotic Dynamics 20, 449-462, 2015 | 53 | 2015 |
On the Stability of Elliptic Equilibria M Guzzo, F Fasso`, G Benettin Mathematical Physics Electronic Journal 4, Paper 1, 16 pages, 1998 | 51 | 1998 |
Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part I G Benettin, F Fassò Nonlinearity 9 (1), 137, 1996 | 51 | 1996 |
Geometry of KAM tori for nearly integrable Hamiltonian systems H Broer, R Cushman, F Fasso, F Takens Ergodic Theory and Dynamical Systems 27 (3), 725-741, 2007 | 50* | 2007 |
Periodic flows, rank-two Poisson structures, and nonholonomic mechanics F Fasso, A Giacobbe, N Sansonetto Regular and Chaotic Dynamics 10 (3), 267-284, 2005 | 42 | 2005 |
Stability properties of the Riemann ellipsoids F Fasso, D Lewis Archive for rational mechanics and analysis 158, 259-292, 2001 | 42 | 2001 |
The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates F Fassò Zeitschrift für angewandte Mathematik und Physik ZAMP 47, 953-976, 1996 | 42 | 1996 |
The exact computation of the free rigid body motion and its use in splitting methods E Celledoni, F Fassò, N Säfström, A Zanna SIAM Journal on Scientific Computing 30 (4), 2084-2112, 2008 | 41 | 2008 |
Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part II: Gyroscopic rotations G Benettin, F Fassò, M Guzzo Nonlinearity 10 (6), 1695, 1997 | 35 | 1997 |
A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds G Benettin, AM Cherubini, F Fasso SIAM Journal on Scientific Computing 23 (4), 1189-1203, 2001 | 34 | 2001 |
Moving energies as first integrals of nonholonomic systems with affine constraints F Fasso, LC García-Naranjo, N Sansonetto Nonlinearity 31 (3), 755, 2018 | 33 | 2018 |
Hamiltonian perturbation theory on a manifold F Fassò Celestial Mechanics and Dynamical Astronomy 62, 43-69, 1995 | 33 | 1995 |
Conservation of `moving 'energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces F Fassò, N Sansonetto arXiv preprint arXiv:1503.06661, 2015 | 31 | 2015 |
The conjugate locus for the Euler top. i. The axisymmetric case L Bates, F Fasso` International Mathematical Forum 2 (43), 2109-2139, 2007 | 25 | 2007 |
Comparison of splitting algorithms for the rigid body F Fassò Journal of computational physics 189 (2), 527-538, 2003 | 25 | 2003 |
Quasi-periodicity of motions and complete integrability of Hamiltonian systems F Fasso Ergodic Theory and Dynamical Systems 18 (6), 1349-1362, 1998 | 25 | 1998 |