Central limit theorems for -statistics of Poisson point processes M Reitzner, M Schulte | 145 | 2013 |

Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization G Last, G Peccati, M Schulte Probability theory and related fields 165, 667-723, 2016 | 134 | 2016 |

Moments and central limit theorems for some multivariate Poisson functionals G Last, MD Penrose, M Schulte, C Thäle Advances in Applied Probability 46 (2), 348-364, 2014 | 69 | 2014 |

Functional Poisson approximation in Kantorovich–Rubinstein distance with applications to U-statistics and stochastic geometry L Decreusefond, M Schulte, C Thäle The Annals of Probability 44 (3), 2147-2197, 2016 | 67 | 2016 |

Normal approximation of Poisson functionals in Kolmogorov distance M Schulte Journal of theoretical probability 29, 96-117, 2016 | 58 | 2016 |

The scaling limit of Poisson-driven order statistics with applications in geometric probability M Schulte, C Thäle Stochastic Processes and their Applications 122 (12), 4096-4120, 2012 | 56 | 2012 |

Normal approximation for stabilizing functionals R Lachièze-Rey, M Schulte, JE Yukich The Annals of Applied Probability 29 (2), 931-993, 2019 | 54 | 2019 |

Second-order properties and central limit theorems for geometric functionals of Boolean models D Hug, G Last, M Schulte | 54 | 2016 |

A central limit theorem for the Poisson–Voronoi approximation M Schulte Advances in Applied Mathematics 49 (3-5), 285-306, 2012 | 39 | 2012 |

Limit theory for the Gilbert graph M Reitzner, M Schulte, C Thäle Advances in Applied Mathematics 88, 26-61, 2017 | 35 | 2017 |

Multivariate second order Poincaré inequalities for Poisson functionals M Schulte, JE Yukich | 23 | 2019 |

Poisson process approximation under stabilization and Palm coupling O Bobrowski, M Schulte, D Yogeshwaran Annales Henri Lebesgue 5, 1489-1534, 2022 | 22 | 2022 |

Poisson point process convergence and extreme values in stochastic geometry M Schulte, C Thäle Stochastic analysis for Poisson point processes: Malliavin calculus, Wiener …, 2016 | 18 | 2016 |

Distances Between Poisson *k* **-Flats**M Schulte, C Thäle Methodology and Computing in Applied Probability 16, 311-329, 2014 | 18 | 2014 |

The random connection model and functions of edge-marked Poisson processes: second order properties and normal approximation G Last, F Nestmann, M Schulte | 17 | 2021 |

Cumulants on Wiener chaos: moderate deviations and the fourth moment theorem M Schulte, C Thäle Journal of Functional Analysis 270 (6), 2223-2248, 2016 | 16 | 2016 |

Malliavin-Stein method in stochastic geometry M Schulte Osnabrück, 2013 | 14 | 2013 |

Rates of multivariate normal approximation for statistics in geometric probability M Schulte, JE Yukich The annals of applied probability 33 (1), 507-548, 2023 | 8 | 2023 |

Exact and asymptotic results for intrinsic volumes of Poisson k-flat processes M Schulte, C Thaele arXiv preprint arXiv:1011.5777, 2010 | 8 | 2010 |

Central limit theorems for the radial spanning tree M Schulte, C Thäle Random structures & algorithms 50 (2), 262-286, 2017 | 7 | 2017 |