Подписаться
Avijit Saha
Avijit Saha
Marie Skłodowska-Curie Postdoctoral Fellow, TU Dresden
Подтвержден адрес электронной почты в домене tu-dresden.de
Название
Процитировано
Процитировано
Год
Near-unity quantum yield in semiconducting nanostructures: Structural understanding leading to energy efficient applications
A Saha, KV Chellappan, KS Narayan, J Ghatak, R Datta, R Viswanatha
The Journal of Physical Chemistry Letters 4 (20), 3544-3549, 2013
722013
Uniform doping in quantum-dots-based dilute magnetic semiconductor
A Saha, A Shetty, AR Pavan, S Chattopadhyay, T Shibata, R Viswanatha
The Journal of Physical Chemistry Letters 7 (13), 2420-2428, 2016
532016
Ag2ZnSnS4 Nanocrystals Expand the Availability of RoHS Compliant Colloidal Quantum Dots
A Saha, A Figueroba, G Konstantatos
Chemistry of Materials 32, 2148-2155, 2020
312020
Diffusion doping in quantum dots: bond strength and diffusivity
A Saha, M Makkar, A Shetty, K Gahlot, AR Pavan, R Viswanatha
Nanoscale 9 (8), 2806-2813, 2017
312017
Visible‐blind ZnMgO Colloidal Quantum Dot Downconverters expand Silicon CMOS Sensors Spectral Coverage into Ultraviolet and enable UV Band Discrimination
A Saha, G Kumar, S Pradhan, G Dash, R Viswanatha, G Konstantatos
Advanced Materials, https://doi.org/10.1002/adma.202109498, 2022
242022
Magnetism at the Interface of Magnetic Oxide and Nonmagnetic Semiconductor Quantum Dots
A Saha, R Viswanatha
ACS Nano 11 (3), 3347-3354, 2017
232017
Ligand assisted digestion and formation of monodisperse FeCoS 2 nanocrystals
A Shetty, A Saha, M Makkar, R Viswanatha
Physical Chemistry Chemical Physics 18 (37), 25887-25892, 2016
172016
Ag2ZnSnS4-ZnS core-shell colloidal quantum dots: a near-infrared luminescent material based on environmentally-friendly elements
A Saha, G Konstantatos
Journal of Materials Chemistry C, DOI: 10.1039/D1TC00421B, 2021
162021
Ultra-Thin Infrared Optical Gain Medium and Optically-Pumped Stimulated Emission in PbS Colloidal Quantum Dot LEDs
N Taghipour, I Tanriover, M Dalmases, GL Whitworth, C Graham, A Saha, ...
Advanced Functional Materials, https://doi.org/10.1002/adfm.202200832, 2022
142022
Interface Modeling Leading to Giant Exchange Bias from the CoO/CoFe2O4 Quantum Dot Heterostructure
A Saha, S Sohoni, R Viswanatha
The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.8b11124, 2019
142019
Volume and concentration scaling of magnetism in dilute magnetic semiconductor quantum dots
A Saha, R Viswanatha
The Journal of Physical Chemistry C 121 (39), 21790-21796, 2017
112017
Core–Shell to Doped Quantum Dots: Evolution of the Local Environment Using XAFS
A Saha, S Chattopadhyay, T Shibata, R Viswanatha
The Journal of Physical Chemistry C 120 (33), 18945-18951, 2016
112016
The curious case of CdTe/CdS: photoabsorption versus photoemission
A Saha, S Chattopadhyay, T Shibata, R Viswanatha
Journal of Materials Chemistry C 2 (20), 3868-3872, 2014
102014
Thermodynamics of Dual Doping in Quantum Dots
M Makkar, A Saha, S Khalid, R Viswanatha
The Journal of Physical Chemistry Letters 10, 1992-1998, 2019
82019
Gallium Sulfide Quantum Dots with Zinc Sulfide and Alumina Shells Showing Efficient Deep Blue Emission
A Saha, R Yadav, D Aldakov, P Reiss
Angewandte Chemie International Edition 62 (45), e202311317, 2023
52023
Water‐Soluble Alumina‐Coated Indium Phosphide Core–Shell Quantum Dots with Efficient Deep‐Red Emission Beyond 700 nm
A Saha, R Yadav, C Rivaux, D Aldakov, P Reiss
Small, 2404426, 2024
22024
Exciton Dynamics in Mn/Ni Dual‐doped Semiconductor Quantum Dots
A Saha, K Gahlot, R Viswanatha
ChemNanoMat, e202100457, 2022
2022
Interface engineering of quantum dot heterostructures for optoelectronic applications and /or mangetic properties
A Saha
Jawaharlal Nehru Centre for Advanced Scientific Research, 2016
2016
Cd-based-chalcogenide/CdS core-shell nanomaterial, defective/defect-free core nanocrystal, methods and applications thereof.
Ranjani Viswanatha, Avijit Saha, Kavassery Sureswaran Narayan, Kishore ...
IN Patent WO2014147555 A2, 2015
2015
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–19